百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

JupyterLab 3.0可视化调试、中文显示

liuian 2024-12-19 14:47 25 浏览


超强下一代 Jupyter Notebook :JupyterLab 3.0 已经发布了,新版本为用户带来了许多新特性,并对扩展系统进行了实质性的改进。


JupyterLab 是广受欢迎的 Jupyter Notebook「新」界面。它是一个交互式的开发环境,可用于 notebook、代码或数据,因此它的扩展性非常强。用户可以使用它编写 notebook、操作终端、编辑 markdown 文本、打开交互模式、查看 csv 文件及图片等。除此以外,JupyterLab 还具有灵活而强大的用户界面。就在近日,这款好用的工具发布了新版本 JupyterLab 3.0。



JupyterLab 3.0 在以下几个方面进行了改进:


  • 可视化调试器;
  • 支持多种显示语言;
  • notebook 目录;
  • 扩展系统。


3 种安装方式


JupyterLab 3.0 的安装方式有 3 种,第一种采用 pip 方式进行安装,代码如下:


pip install jupyterlab==3


第 2 种采用 mamba(快速跨平台软件包管理器)方式进行安装,代码如下:


mamba install -c conda-forge jupyterlab=3


第 3 种采用 conda 方式进行安装,代码如下:


conda install -c conda-forge jupyterlab=3


需要注意,为了兼容 JupyterLab 3.0,许多第三方扩展仍在更新中,所以用户需要检查自己使用的扩展,必要时也可以更新这些扩展。接下来详细介绍 JupyterLab 3.0 在面向用户使用方面的一些主要改进。


JupyterLab 3.0 新特性


可视化调试器


JupyterLab 3.0 现在具备可视化调试器功能了。为了使用可视化调试器,用户首先需要一个支持调试器的内核。Xeus-Python 内核是第一个支持 Python 代码调试的 Jupyter 内核。展示如下:


在 JupyterLab 3.0 中使用可视化调试器进入 Python 程序。


更多详细文档请参阅:https://jupyterlab.readthedocs.io/en/stable/user/debugger.html


目录扩展


现在 JupyterLab 3.0 提供了目录扩展,使得用户更方便地查看和浏览文档结构。展示如下:


在 JupyterLab 3.0 使用目录功能。


支持多种语言显示


JupyterLab 3.0 提供了设置用户界面显示语言的功能。若要使用这种功能,用户需要将语言包作为单独的 Python 包安装。语言包在 GitHub 项目中已经分组,采用 pip 的方式就可以安装。例如,使用以下代码可以安装简体中文语言包:


pip install jupyterlab-language-pack-zh-CN


以简体中文显示的 JupyterLab 3.0 界面。


关于添加新语言包请参考:https://jupyterlab.readthedocs.io/en/stable/user/language.html


简单交互界面模式的改进


JupyterLab 3.0 对简单交互界面模式(即以往的单文档显示模式)进行了更新,使交互界面模式更流畅、更能面向文档。用户可以使用状态栏中的开关切换简单交互界面模式,也可以从视图菜单或命令面板中切换或者使用默认快捷键「Ctrl/Cmd+Shift+D」。


启用和禁用简单交互界面模式。


JupyterLab 3.0 对移动设备的支持也得到了很大的改进。用户可以对窗口进行缩展,使布局更加紧凑。当窗口缩小时,JupyterLab 自动切换到简单交互界面模式。


JupyterLab 在屏幕缩小时自动切换到简单交互界面模式。


目前这项功能正在不断的迭代更新,使得这个交互界面在移动设备上更容易访问。


使用 pip 和 conda/mamba 方式安装新的扩展


JupyterLab 扩展现在可以作为预构建的扩展进行分发,而不需要用户重新构建 JupyterLab 或安装 Node.js。用户可以使用熟悉的包管理器(如 pip、conda 和 mamba)将预构建的扩展作为 Python 包分发,从而使得安装和使用扩展更快更方便。


采用 pip 方式安装新的扩展。


预构建的扩展可以作为单独的包发布到 PyPI 和 conda-forge 中,或者捆绑到带有 Jupyter 服务器扩展和 Classic Notebook 扩展的包中。这些有助于整个系统的一致性。


例如:使用 pip 或 conda 方式安装新的 ipywidgets 7.6.0,以在典型的 Jupyter Notebook 和 JupyterLab3.0 中自动启用 ipywidgets—无需额外的步骤或者重建 JupyterLab。


在 JupyterLab 3.0 中自动安装 ipywidgets。


改进 Extension Author 的工作流程


新的预构建扩展对于 Extension Author 来说开发起来非常方便。TypeScript 扩展 cookiecutter 已经更新为默认情况下开发预构建的扩展,并提供了所有必要的工具来快速从头开始创建新的扩展。


关于扩展的更多信息,请参考:


  • https://jupyterlab.readthedocs.io/en/stable/extension/extension_dev.html
  • https://jupyterlab.readthedocs.io/en/latest/extension/extension_migration.html


如果你正在寻找示例来学习如何制作自己的扩展,请查看 GitHub 上的扩展示例库。这些示例已经更新兼容 JupyterLab 3.0,并提供了开发扩展的手动方法。


扩展示例库地址:https://github.com/jupyterlab/extension-examples


变更日志


上述内容仅仅概述了 JupyterLab 3.0 的新功能。如果你想要浏览更完整的变更列表,包括错误修复等,请查看详细变更日志。


  • 详细变更日志地址:https://jupyterlab.readthedocs.io/en/stable/getting_started/changelog.html#v3-0
  • JupyterLab 3.0 测试地址:https://mybinder.org/v2/gh/jupyterlab/jupyterlab-demo/3818244?urlpath=lab

原文链接:https://blog.jupyter.org/jupyterlab-3-0-is-out-4f58385e25bb

相关推荐

GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!

「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...

高丽大学等机构联合发布StarGAN:可自定义表情和面部特征

原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...

TensorFlow和PyTorch相继发布最新版,有何变化

原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...

「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口

上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...

20K star!搞定 LLM 微调的开源利器

LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...

大模型DeepSeek本地部署后如何进行自定义调整?

1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...

因配置不当,约5000个AI模型与数据集在公网暴露

除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...

基于pytorch的深度学习人员重识别

基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...

DeepSeek本地部署:轻松训练你的AI模型

引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...

谷歌今天又开源了,这次是Sketch-RNN

前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...

Tensorflow 使用预训练模型训练的完整流程

前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...

30天大模型调优学习计划(30分钟训练大模型)

30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...

python爬取喜马拉雅音频,json参数解析

一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...

五、JSONPath使用(Python)(json数据python)

1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...

Python网络爬虫的时候json=就是让你少写个json.dumps()

大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...