20种小技巧,玩转Google Colab google colombia
liuian 2024-12-19 14:46 31 浏览
选自amitness.com
作者:Amit Chaudhary
机器之心编译
编辑:陈萍
Google Colab 给广大的 AI 开发者提供了免费的 GPU,你可以在上面轻松地跑 Tensorflow、Pytorch 等深度学习框架。但关于 Colab 的使用技巧你又掌握了多少呢?这篇文章将介绍 20 种 Colab 使用技巧,帮你提高使用效率。
1. 便签本 Notebook
当我们在 colab 上尝试一些临时的东西时,我们会创建一堆杂乱、没有标题的 Notebook。
为了解决这个问题,你可以把以下链接加入书签:https://colab.research.google.com/notebooks/empty.ipynb
这将打开一个特殊的 scratch notebook,并且你对该 notebook 所做的任何更改都不会保存到你的主目录中。
2. 单元计时
通常,我们手动计算一段代码的开始时间和结束时间之间的差值来衡量所花费的时间。Colab 提供了内置功能来执行此操作。在执行了一个单元(cell)之后,将鼠标悬停在单元运行图标上,你将获得代码执行时间的估计值。
3. 运行某个单元的一部分
你也可以运行某个单元的一部分,通过选择单元格并点击 Runtime 索引到 Run Selection 按钮或使用键盘快捷键 Ctrl + Shift + Enter。
4. Jupyter Notebook 快捷键
快捷键为编程带来了便利,但 Jupyter Notebook 中的快捷键不能直接在 Colab 中使用。不过,这里有一个关系映射表来解决这一问题。从中可以看出,你只需要在 Jupyter 的快捷键前面加上「Ctrl +M」就能在 Colab 中使用。此规则适用于大多数快捷键。
以下是一些特例,其快捷方式已完全更改或保持不变。
5. 跳转到类定义
与 IDE 相似,你可以通过按 Ctrl 键,然后单击一个类名来跳转到类定义。例如,在这里我们通过按 Ctrl 并单击 Dense 类名来查看 Keras 中 Dense 层的类定义。
6. 在 GitHub 中打开 Notebooks
Google Colab 团队提供了官方的 Chrome 扩展程序。使用 colab 时,可以直接在 GitHub 上打开 notebooks。
扩展程序下载地址:https://chrome.google.com/webstore/detail/open-in-colab/iogfkhleblhcpcekbiedikdehleodpjo
安装后,单击 GitHub notebook 的 colab 图标直接将其打开。
或者,你也可以手动打开 GitHub notebook,将 github.com 替换为 colab.research.google.com/github 即可。
https://github.com/fastai/course-v3/blob/master/nbs/dl1/00_notebook_tutorial.ipynb
替换为
https://colab.research.google.com/github/fastai/course-v3/blob/master/nbs/dl1/00_notebook_tutorial.ipynb
甚至更简单的方法是用 githubtocolab.com 替换 github.com。
https://github.com/fastai/course-v3/blob/master/nbs/dl1/00_notebook_tutorial.ipynb
替换为
https://githubtocolab.com/fastai/course-v3/blob/master/nbs/dl1/00_notebook_tutorial.ipynb
7. 从 Colab 运行 Flask 应用
使用 flask-ngrok 库(https://github.com/gstaff/flask-ngrok),你可以轻松地将运行在 colab 上的 Flask Web 应用程序转换为一个 demo 原型。
首先,你需要安装 flask 和 flask-ngrok。
!pip install flask-ngrok flask==0.12.2
然后,你只需要将「flask app」对象传递给「run_with_ngrok」函数,它将在启动服务器时公开 ngrok 端点。
from flask import Flaskfrom flask_ngrok import run_with_ngrok
app = Flask(__name__)run_with_ngrok(app)
@app.route('/')def hello(): return 'Hello World!' if __name__ == '__main__': app.run()
8. 在 Tensorflow 版本之间切换
你可以很容易地在 Tensorflow 1 和 Tensorflow 2 之间切换。
要切换到 Tensorflow 1.15.2,请使用以下命令:
%tensorflow_version 1.x
要切换到 Tensorflow 2.2,请运行以下命令:
%tensorflow_version 2.x
你需要重新启动才能生效。出于性能考虑,Colab 建议使用预安装的 Tensorflow 版本,而不是用 pip 命令安装它。
9. Tensorboard 集成
Colab 还提供了一个命令,可以直接从 notebook 使用 Tensorboard。你只需要使用 --logdir 设置日志目录位置。
你可以从官方 notebook 学到它的使用方法:https://colab.research.google.com/github/tensorflow/tensorboard/blob/master/docs/tensorboard_in_notebooks.ipynb。
%load_ext tensorboard%tensorboard --logdir logs
10. 查看资源限制
Colab 为他们的免费版本和专业版本提供了以下规格。根据自己的情况,如果你需要更好的运行时间、GPU 和内存,你可以以每月 10 美元的价格切换到专业版本。
可以通过运行以下命令查看你已经被分配到的 GPU:
!nvidia-smi
有关 CPU 的信息,可以运行此命令:
!cat /proc/cpuinfo
此外,你还可以通过运行以下命令查看 RAM 容量
import psutilram_gb = psutil.virtual_memory().total / 1e9print(ram_gb)
11. 使用交互式 shell
Colab 中没有内置的交互终端。但是可以使用 bash 命令以交互方式试用 shell 命令。只需运行此命令,你将获得交互式输入。
!bash
现在,你可以在给定的输入框中运行任何 shell 命令。
要退出 shell,只需在输入框中键入 exit。
12. 当前的内存和存储使用情况
Colab 提供了 RAM 和磁盘使用情况的指示器。如果将鼠标悬停在指示器上,将弹出一个窗口,其中包含当前内存和存储使用情况和总容量。
13.「Open in Colab」 标志
你可以使用如下 markdown 代码在 README.md 或 jupyter notebooks 中添加「Open in Colab 」标志。
在这段代码中,我们正在加载 SVG 图片,然后将其链接到 colab notebook。
[](https://colab.research.google.com/notebooks/basic_features_overview.ipynb)
14. Pandas 交互表
Colab 提供了一个 notebook 扩展,用于向 pandas dataframes 添加交互式排序和过滤功能。要使用它,请运行以下代码。
%load_ext google.colab.data_table
在加载下面的扩展之后,你可以看到常规的 pandas dataframe 和交互式 dataframe。
15. 设置 Conda 环境
如果将 miniconda 用作 python 环境管理器,你可以通过在 notebook 顶部运行以下命令,在 colab 上对其进行设置。
# Download Miniconda installation script!wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh# Make it executable!chmod +x Miniconda3-latest-Linux-x86_64.sh# Start installation in silent mode!bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local# Make conda packages available in current environmentimport syssys.path.append('/usr/local/lib/python3.7/site-packages/')
执行完单元后,你可以照常使用 conda 安装软件包。
!conda install -y flask
16. 从命令行管理 Colab Notebooks
你可以使用名为 colab-cli 的库轻松创建 colab notebooks 并将其与本地 notebooks 同步:https://github.com/Akshay090/colab-cli
17. 运行后台任务
在某些情况下,我们需要先启动一些 Web 服务器或后台任务,然后才能执行常规程序。
要运行后台任务,请使用「nohup」命令,然后使用常规的 shell 命令,并在末尾添加「&」使其在后台运行。这样确保可以在之后的 notebook 中运行单元,而不会被后台任务终止。
!nohup bash ping.sh &
18. 提醒训练完成
如果你要执行耗时较长的任务(例如训练模型),你可以将 Colab 设置为在完成后发送桌面通知。
要启用此功能,请转到「Tools ? Settings ? Site」,然后启用「Show desktop notifications」复选框。
这时将弹出一个窗口,以启用浏览器通知。只要接受它,即使你在另一个选项卡、窗口或应用程序上,colab 也会在任务完成时通知你。
19. 运行 javascript 代码
使用 %%javascript 命令运行 javascript 代码。
20. 在 Colab 上运行 VSCode
你可以在 Colab 上运行完整的 VSCode。请参考文档:https://amitness.com/vscode-on-colab/。
原文链接:https://amitness.com/2020/06/google-colaboratory-tips/
相关推荐
- GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!
-
「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...
- 高丽大学等机构联合发布StarGAN:可自定义表情和面部特征
-
原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...
- TensorFlow和PyTorch相继发布最新版,有何变化
-
原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...
- 「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口
-
上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...
- 20K star!搞定 LLM 微调的开源利器
-
LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...
- 大模型DeepSeek本地部署后如何进行自定义调整?
-
1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...
- 因配置不当,约5000个AI模型与数据集在公网暴露
-
除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...
- 基于pytorch的深度学习人员重识别
-
基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...
- DeepSeek本地部署:轻松训练你的AI模型
-
引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...
- 谷歌今天又开源了,这次是Sketch-RNN
-
前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...
- Tensorflow 使用预训练模型训练的完整流程
-
前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...
- 30天大模型调优学习计划(30分钟训练大模型)
-
30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...
- python爬取喜马拉雅音频,json参数解析
-
一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...
- 五、JSONPath使用(Python)(json数据python)
-
1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...
- Python网络爬虫的时候json=就是让你少写个json.dumps()
-
大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)