Agent实战-JSON结构化智能
liuian 2024-12-08 16:20 14 浏览
本文译自JSON agents with Ollama & LangChain一文,以电影推荐助手为实践案例,讲解了博主在工程实践中,如何基于LangChain框架和本地LLM优雅实现了Json结构化的智能体。系列合集,点击「链接」查看
随着AI应用工程的飞速发展,我们不难发现为大语言模型(LLMs)提供额外工具能大大增强其功能。
举例来说,GPT3.5版本通过集成Bing搜索和Python解释器实现了能力的跃迁。GPTs则直接将api调用作为工具进行了集成,LLM会决定是直接作出回应,还是先调用它提供的工具。这些工具不仅限于获取额外信息,它们还能发挥其他功能,比如帮用户订餐。
智能代理LLM与图数据库的交互示意图
尽管OpenAI已经用它的专门模型让我们享受了工具使用的便捷,大多数其他LLM在函数调用和工具使用方面仍不及OpenAI的水平。我尝试了Ollama上的多数模型,大多数在持续生成可用于代理的预定义结构化输出方面表现不佳。另一方面,也有一些模型是专为函数调用优化的。但这些模型要么是采用难以理解的自定义提示架构,要么除了函数调用别无它用。
今天我们要探讨的是如何实施一个基于JSON格式的LLM智能代理。
语义层的工具
LangChain文档中的示例(JSON代理,HuggingFace示例)使用单字符串输入的工具。但因为语义层的工具需要稍微复杂一些的输入,我需要进行一些深入研究。下面是推荐工具的示例输入:
all_genres = [
"Action",
"Adventure",
"Animation",
"Children",
"Comedy",
"Crime",
"Documentary",
"Drama",
"Fantasy",
"Film-Noir",
"Horror",
"IMAX",
"Musical",
"Mystery",
"Romance",
"Sci-Fi",
"Thriller",
"War",
"Western",
]
class RecommenderInput(BaseModel):
movie: Optional[str] = Field(description="用来推荐的电影")
genre: Optional[str] = Field(
description=("用于推荐的电影类型。可选项有:" f"{all_genres}")
)
推荐工具有两个可选的输入项:电影和类型,并且我们为类型提供了一系列可选的值。虽然这些输入项并不特别复杂,但比单一字符串输入要高级一些,因此实现起来也略有不同。
基于JSON的LLM智能代理提示
在我的实现中,我深受现有的hwchase17/react-json提示的启发,这一提示可以在LangChain hub中找到。提示使用以下系统消息:
尽你所能回答下面的问题。你可以使用以下工具:
{tools}
你可以通过指定一个JSON块来使用工具。
具体而言,这个JSON应该包含一个`action`键(用来指定要使用的工具名称)和一个`action_input`键(工具的输入在这里)。
"action"键里的值应当仅为:{tool_names}
$JSON_BLOB应该只包含单一的动作,请不要返回一个列表包含多个动作。以下是一个有效$JSON_BLOB的示例:
```
{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}
```
每次回答都要遵循以下格式:
Question: 你需要回答的问题
Thought: 你应该在思考要做什么
Action:
```
$JSON_BLOB
```
Observation: 动作的结果
...(这种思考/动作/观察的过程可以重复N次)
Thought: 我现在知道最终答案了
Final Answer: 对原本提问的最终回答
开始!请记住每次回答时都要精确使用`Final Answer`这个词。
提示的开始部分通过定义可用的工具来设定,后面我们将深入讨论。提示中最关键的部分是对LLM输出预期的指示。当LLM需要使用工具时,它应该使用以下JSON结构:
{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}
这就是为什么它被称作基于JSON的代理:我们指导LLM在希望使用任何可用工具时生成一个JSON。然而,这只是输出定义的一小部分。完整的输出应遵循以下结构:
Thought: 你应该在思考要做什么
Action:
```
$JSON_BLOB
```
Observation: 动作的结果
...(这可以重复N次)
Final Answer: 对原本提问的最终回答
LLM在输出中总是需要解释它正在做什么,即"Thought"部分。当它想要使用任何可用的工具时,它应以JSON块的形式提供动作输入。"Observation"部分留给工具的输出,而当代理决定可以回答用户提出的问题时,它应使用"Final Answer"关键词。以下是电影智能代理使用此结构的一个实例。
在这个例子中,我们让代理推荐一部喜剧片。由于代理的一个可用工具是推荐工具,它决定利用推荐工具,并提供了用JSON写的输入语法。幸运的是,LangChain有一个内置的JSON智能代理输出解析器,我们无需操心其实现细节。然后,LLM从工具得到回应,并在提示语中作为观察结果使用。由于工具提供了所有必要的信息,LLM认为已经有了足够的信息来构建可以交给用户的最终答案。
我注意到对Mixtral的提示工程经常失败,它不总是只在需要工具时使用JSON语法。在我的测试中,当它不想使用任何工具时,有时它会使用如下的JSON动作输入:
{{
"action": Null,
"action_input": ""
}}
如果动作为null或类似的,LangChain的输出解析函数并不会忽视这个动作,而是会报错说没有定义null这个工具。我尝试对此进行提示修改,但没能一直做到。因此,我决定增加一个假设性的闲聊工具,以便用户想要进行闲聊时代理可以调用。
response = (
"创建一个最终回答它们是否有任何关于电影或演员的问题"
)
class SmalltalkInput(BaseModel):
query: Optional[str] = Field(description="用户提问")
class SmalltalkTool(BaseTool):
name = "Smalltalk"
description = "当用户打招呼或想要闲聊时适用"
args_schema: Type[BaseModel] = SmalltalkInput
def _run(
self,
query: Optional[str] = None,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""使用该工具。"""
return response
如此,代理在用户打招呼时可以决定使用一个假的Smalltalk工具,我们再也不会因为解析null或者缺失工具名而遇到问题了。
这样的临时弥补方法很管用,所以我选择留用它。像之前说的,大多数模型并未被训练以产生操作输入或者在不需要动作时生成文本,因此我们必须利用现有资源。至于操控模型以便它只在有必要时产生JSON动作输入,有时是成功的,有时则依赖情况而定。但像smalltalk工具这样给它提供一个备选项,可以避免出现异常。
在系统提示中定义工具输入
如前所述,我需要弄清楚如何定义略微复杂的工具输入,这样LLM才能正确解释它们。好笑的是,在我实现了一个自定义功能后,我找到了一个现成的LangChain功能,这个功能可以将自定义的Pydantic工具输入定义转换成Mixtral能识别的JSON对象。
from langchain.tools.render import render_text_description_and_args
tools = [RecommenderTool(), InformationTool(), Smalltalk()]
tool_input = render_text_description_and_args(tools)
print(tool_input)
它产生了以下的字符串描述:
"Recommender":"当你需要推荐一部电影时使用",
"args":{
{
"movie":{
{
"title":"Movie",
"description":"用于推荐的电影",
"type":"string"
}
},
"genre":{
{
"title":"Genre",
"description":"用于推荐的电影类型。可选项有:['Action', 'Adventure', 'Animation', 'Children', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror', 'IMAX', 'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western']",
"type":"string"
}
}
}
},
"Information":"当你需要回答关于各种演员或电影问题时使用",
"args":{
{
"entity":{
{
"title":"Entity",
"description":"问题中提到的电影或人名",
"type":"string"
}
},
"entity_type":{
{
"title":"Entity Type",
"description":"实体的类型。可选项为'movie'或'person'",
"type":"string"
}
}
}
},
"Smalltalk":"当用户打招呼或想要闲聊时使用",
"args":{
{
"query":{
{
"title":"Query",
"description":"用户提问",
"type":"string"
}
}
}
}
我们只需将这些工具描述复制粘贴到系统提示中,Mixtral就能正确使用这些提前定义的工具,这非常方便。
结论
为实现这个基于JSON的智能代理,Harrison Chase和LangChain团队已经完成了大部分工作,我对此表示由衷的感谢。我只需要把碎片拼凑起来即可。正如所说,不要期待与GPT-4同等水平的性能。然而,我相信像Mixtral这样更强大的开源LLMs可以立即当做智能代理使用(比起GPT-4来可能需要更多的异常处理)。我期待未来会有更多开源LLMs被优化以作为智能代理使用。
References
- Langchain模板:https://github.com/langchain-ai/langchain/tree/master/templates/neo4j-semantic-ollama?ref=blog.langchain.dev
- Jupyter笔记本版本:https://github.com/tomasonjo/blogs/blob/master/llm/ollama_semantic_layer.ipynb?ref=blog.langchain.dev
相关推荐
- GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!
-
「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...
- 高丽大学等机构联合发布StarGAN:可自定义表情和面部特征
-
原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...
- TensorFlow和PyTorch相继发布最新版,有何变化
-
原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...
- 「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口
-
上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...
- 20K star!搞定 LLM 微调的开源利器
-
LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...
- 大模型DeepSeek本地部署后如何进行自定义调整?
-
1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...
- 因配置不当,约5000个AI模型与数据集在公网暴露
-
除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...
- 基于pytorch的深度学习人员重识别
-
基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...
- DeepSeek本地部署:轻松训练你的AI模型
-
引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...
- 谷歌今天又开源了,这次是Sketch-RNN
-
前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...
- Tensorflow 使用预训练模型训练的完整流程
-
前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...
- 30天大模型调优学习计划(30分钟训练大模型)
-
30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...
- python爬取喜马拉雅音频,json参数解析
-
一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...
- 五、JSONPath使用(Python)(json数据python)
-
1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...
- Python网络爬虫的时候json=就是让你少写个json.dumps()
-
大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)