iText2KG:使用LLM构建增量知识图谱(KG)
liuian 2024-12-08 16:19 51 浏览
iText2KG
一种由 LLM 驱动的零样本方法,使用大型语言模型构建增量知识图谱(KG)
iText2KG 是一个 Python 包,通过利用大型语言模型从文本文档中提取实体和关系,逐步构建具有已解析实体和关系的一致知识图谱。
它具有零样本能力,无需专门的训练即可跨各个领域提取知识。
它包含四个模块:文档提炼器、增量实体提取器、增量关系提取器和图形集成器与可视化。
- 文档提取器:此模块将原始文档重新表述为预定义的语义块,并由指导 LLM 提取特定信息的模式引导。
- 增量实体提取器:此模块识别并解析语义块内的唯一语义实体,确保实体之间的清晰度和区别。
- 增量关系提取器:此组件处理已解析的实体以检测语义上唯一的关系,解决语义重复的挑战。
- Neo4j 图形集成器:最后一个模块以图形格式可视化关系和实体,利用 Neo4j 进行有效表示。
对于我们的 iText2KG 它包含了两大特点
- 增量构建:iText2KG 允许增量构建 KG,这意味着它可以在新数据可用时不断更新和扩展图,而无需进行大量重新处理。
- 零样本学习:该框架利用 LLM 的零样本功能,使其无需预定义集或外部本体即可运行。这种灵活性使其能够适应各种 KG 构建场景,而无需进行大量训练或微调。
一 、设置模型
在运行 iText2KG 之前,我们先设置好大模型,我这里选择的是 OpenAi 的模型以及 HuggingFace 的 bge-large-zh embedding 模型。这么选择也是考虑到构建 KG 的准确度。
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
import os
os.environ["OPENAI_API_KEY"] = "*****"
openai_api_key = os.environ["OPENAI_API_KEY"]
openai_llm_model = llm = ChatOpenAI(
model="gpt-4o-mini",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
)
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg=openai_llm_model.invoke(messages)
开始部署我们的 Embedding 模型:
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
openai_embeddings_model = HuggingFaceEmbeddings(model_name="BAAI/bge-large-zh-v1.5")
text = "This is a test document."
query_result = openai_embeddings_model.embed_query(text)
query_result[:3]
doc_result = openai_embeddings_model.embed_documents([text])
二 、使用 iText2KG 构建 KG
我们这里的场景是,给出一篇简历,使用知识图谱将在线职位描述与生成的简历联系起来。
设定目标是评估候选人是否适合这份工作。
我们可以为 iText2KG 的每个模块使用不同的 LLM 或嵌入模型。但是,重要的是确保节点和关系嵌入的维度在各个模型之间保持一致。
如果嵌入维度不同,余弦相似度可能难以准确测量向量距离以进行进一步匹配。
我们的简历放到根目录,加载简历:
from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader(f"./CV_Emily_Davis.pdf")
pages = loader.load_and_split()
初始化 DocumentDistiller 引入 llm :
from itext2kg.documents_distiller import DocumentsDisiller, CV
document_distiller = DocumentsDisiller(llm_model = openai_llm_model)
信息提炼:
IE_query = '''
# DIRECTIVES :
- Act like an experienced information extractor.
- You have a chunk of a CV.
- If you do not find the right information, keep its place empty.
'''
# 使用定义好的查询和输出数据结构提炼文档。
distilled_cv = document_distiller.distill(documents=[page.page_content.replace("{", '[').replace("}", "]") for page in pages], IE_query=IE_query, output_data_structure=CV)
将提炼后的文档格式化为语义部分。
semantic_blocks_cv = [f"{key} - {value}".replace("{", "[").replace("}", "]") for key, value in distilled_cv.items() if value !=[] and value != "" and value != None]
我们可以自定义输出数据结构,我们这里定义了4种,工作经历模型,岗位,技能,证书。
from pydantic import BaseModel, Field
from typing import List, Optional
class JobResponsibility(BaseModel):
description: str = Field(..., description="A specific responsibility in the job role")
class JobQualification(BaseModel):
skill: str = Field(..., description="A required or preferred skill for the job")
class JobCertification(BaseModel):
certification: str = Field(..., description="Required or preferred certifications for the job")
class JobOffer(BaseModel):
job_offer_title: str = Field(..., description="The job title")
company: str = Field(..., description="The name of the company offering the job")
location: str = Field(..., description="The job location (can specify if remote/hybrid)")
job_type: str = Field(..., description="Type of job (e.g., full-time, part-time, contract)")
responsibilities: List[JobResponsibility] = Field(..., description="List of key responsibilities")
qualifications: List[JobQualification] = Field(..., description="List of required or preferred qualifications")
certifications: Optional[List[JobCertification]] = Field(None, description="Required or preferred certifications")
benefits: Optional[List[str]] = Field(None, description="List of job benefits")
experience_required: str = Field(..., description="Required years of experience")
salary_range: Optional[str] = Field(None, description="Salary range for the position")
apply_url: Optional[str] = Field(None, description="URL to apply for the job")
定义一个招聘工作需求的描述:
job_offer = """
About the Job Offer
THE FICTITIOUS COMPANY
FICTITIOUS COMPANY is a high-end French fashion brand known for its graphic and poetic style, driven by the values of authenticity and transparency upheld by its creator Simon Porte Jacquemus.
Your Role
Craft visual stories that captivate, inform, and inspire. Transform concepts and ideas into visual representations. As a member of the studio, in collaboration with the designers and under the direction of the Creative Designer, you should be able to take written or spoken ideas and convert them into designs that resonate. You need to have a deep understanding of the brand image and DNA, being able to find the style and layout suited to each project.
Your Missions
Translate creative direction into high-quality silhouettes using Photoshop
Work on a wide range of projects to visualize and develop graphic designs that meet each brief
Work independently as well as in collaboration with the studio team to meet deadlines, potentially handling five or more projects simultaneously
Develop color schemes and renderings in Photoshop, categorized by themes, subjects, etc.
Your Profile
Bachelor’s degree (Bac+3/5) in Graphic Design or Art
3 years of experience in similar roles within a luxury brand's studio
Proficiency in Adobe Suite, including Illustrator, InDesign, Photoshop
Excellent communication and presentation skills
Strong organizational and time management skills to meet deadlines in a fast-paced environment
Good understanding of the design process
Freelance cont
继续使用上面方法做信息提炼:
IE_query = '''
# DIRECTIVES :
- Act like an experienced information extractor.
- You have a chunk of a job offer description.
- If you do not find the right information, keep its place empty.
'''
distilled_Job_Offer = document_distiller.distill(documents=[job_offer], IE_query=IE_query, output_data_structure=JobOffer)
print(distilled_Job_Offer)
semantic_blocks_job_offer = [f"{key} - {value}".replace("{", "[").replace("}", "]") for key, value in distilled_Job_Offer.items() if value !=[] and value != "" and value != None]
到这里准备工作完成,简历和工作需求都已经提炼完毕,然后正式开始构建 graph,我们将简历的所有语义块作为一个块传递给了 LLM。
也将工作需求作为另一个语义块传递,也可以在构建图时将语义块分开。
我们需要注意每个块中包含多少信息,然后好将它与其他块连接起来,我们在这里做的就是一次性传递所有语义块。
from itext2kg import iText2KG
itext2kg = iText2KG(llm_model = openai_llm_model, embeddings_model = openai_embeddings_model)
global_ent, global_rel = itext2kg.build_graph(sections=[semantic_blocks_cv], ent_threshold=0.6, rel_threshold=0.6)
global_ent_, global_rel_ = itext2kg.build_graph(sections=[semantic_blocks_job_offer], existing_global_entities = global_ent, existing_global_relationships = global_rel, ent_threshold=0.6, rel_threshold=0.6)
iText2KG 构建 KG 的过程我们看到有很多参数,下面分贝是对每个参数的表示做一些解释:
- llm_model:用于从文本中提取实体和关系的语言模型实例。
- embeddings_model:用于创建提取实体的向量表示的嵌入模型实例。
- sleep_time (int):遇到速率限制或错误时等待的时间(以秒为单位)(仅适用于 OpenAI)。默认为 5 秒。
iText2KG 的 build_graph 参数:
- sections (List[str]):字符串(语义块)列表,其中每个字符串代表文档的一部分,将从中提取实体和关系。
- existing_global_entities (List[dict], optional):与新提取的实体进行匹配的现有全局实体列表。每个实体都表示为一个字典。
- existing_global_relationships (List[dict], optional):与新提取的关系匹配的现有全局关系列表。每个关系都表示为一个字典。
- ent_threshold (float, optional):实体匹配的阈值,用于合并不同部分的实体。默认值为 0.7。
- rel_threshold (float, optional):关系匹配的阈值,用于合并不同部分的关系。默认值为 0.7。
从图中结果看到我们构建过程中的实体,和关联关系。
最后使用 GraphIntegrator 对构建的知识图谱进行可视化。
使用指定的凭据访问图形数据库 Neo4j,并对生成的图形进行可视化,以提供从文档中提取的关系和实体的视觉表示。
from itext2kg.graph_integration import GraphIntegrator
URI = "bolt://3.216.93.32:7687"
USERNAME = "neo4j"
PASSWORD = "selection-cosal-cubes"
new_graph = {}
new_graph["nodes"] = global_ent_
new_graph["relationships"] = global_rel_
GraphIntegrator(uri=URI, username=USERNAME, password=PASSWORD).visualize_graph(json_graph=new_graph)
打开我们的 Neo4j 图形数据库:
可以看到简历和工作需求的匹配关系连接。这样子我们可以灵活的运用 iText2KG 框架做图形关系和实体的增量。
三、总结
本文介绍了使用大型语言模型 ( LLM ) 构建增量知识图谱 ( KG ) 的 iText2KG 框架。一个强大的 KG 构建框架,该框架利用了 LLM 的优势,解决了该领域的重大挑战,并提出了一种模块化方法,可增强不同领域的灵活性和适用性。
- 增强的架构一致性:iText2KG 方法在各种文档类型中实现了高架构一致性,优于由于依赖预定义结构而经常难以保持一致性的传统方法。
- 实体和关系提取的高精度:该框架有效地缓解了与语义重复和未解决实体相关的问题,这些问题在传统方法中普遍存在。这导致更准确和可靠的 KG。
- 减少后处理需求:传统方法通常需要大量的后处理来解决歧义和冗余。iText2KG 通过采用结构化结构来最大限度地减少这种需求。
相关推荐
- win官网网址(win官方网站)
-
具体方法如下:打开电脑,在浏览器地址栏输入window,就会进入win中文官网,然后再寻找自己需要的软件,升级包等就可以了。下面是windows官网网址:1http://www.microsoft.c...
- wifi网址登录入口(wifi网址登录入口有哪些)
-
wifi网页登录入口是网关地址192.168.1.1.1.首先检查路由器线路连接(参考前面手机设置路由器部分)2.将电脑Tnternet协议(TCP/IP)属性设置为“自动获取IP地址”和“自...
- 没有驱动程序怎么安装打印机
-
(1)启动电脑进入Windows操作系统,在桌面上单击开始-设置-打印机。(2)用鼠标右单击安装好的打印机图标,在弹出的右键菜单中选择属性,然后单击打印测试页按钮。(3)此时打印机会打出一页信息,从这...
- u盘怎么取消写保护状态(u盘如何解除写保护状态)
-
如果您的U盘被设置为写保护,您可以尝试以下方法来关闭写保护:1.检查U盘上的物理开关:一些U盘上可能有一个物理开关,用于启用或禁用写保护。请检查U盘的外壳,看看是否有这样的开关,并将其切换到未锁定的...
- 压缩文件查看器(压缩文件查看器密码是多少)
-
1,打开手机上面的文件管理器,找到要压缩的WPS文件。2,长按一下WPS文件,然后选择要压缩的文件。3,点击右下角的【更多】,选择【压缩】。4,对压缩文件进行保存,压缩完成。扩展资料:wps产品特点1...
- 键盘哪个是截图键(键盘中的截图键是哪一个)
-
1、按Prtsc键截图这样获取的是整个电脑屏幕的内容,按Prtsc键后,可以直接打开画图工具,接粘贴使用。也可以粘贴在QQ聊天框或者Word文档中,之后再选择保存即可。2、按Ctrl+Prtsc键截图...
- flash插件电脑版下载(flash插件下载安装)
-
可以不安装,不安装对电脑也不会有什么影响。友情提示,最好安装,这个也不会占用你多少内存,它是用来播放网页中的flash文件的。如果你不安装,网页中的flash动画就不能正常播放。浏览器也会提示你安装!...
- foxmail邮箱怎么设置(foxmail邮箱设置成功后点完成没反应)
-
操作步骤/方法1.打开新建界面:2.打开foxmail,在上方导航栏处找到“邮箱(B)”点开此功能,会看到一个下拉菜单,在下拉菜单中找到“新建邮箱账户(N)”。3.建立账户信息:4.点击“新建邮箱账...
- 电脑自动关机解决办法(电脑自动关机,原来是这里出了问题)
-
电脑自动关机的原因一、系统文件损坏一个完整的系统受到袭击之后,电脑就不能进行初始化,从而引起自动关机,这也是一个常见的原因。可以选择重装系统的方法来解决问题。电脑自动关机的原因二、CPU太热这是电脑自...
- m2固态硬盘安装系统教程(m2固态如何装系统)
-
加装m.2固态硬盘后,重装系统的操作步骤如下:1、下载U盘启动盘制作工具,下载一个GHOST版最新的WIN7,准备一个足够大的U盘(16G足够了),用U盘启动盘制作工具将其制作成启动U盘;2、插入新电...
- 运行chkdsk工具(运行chkdsk工具怎么解决)
-
1、win+R键打开运行,输入cmd。2、输入并回车执行chkdsk/?命令,可以了解chkdsk命令的使用方法。3、比如一些常用的命令,输入并按回车执行chkdskm:/f命令,可以检...
- 办公软件2007官方下载免费完整版
-
office字体都变成了英文是因为设置了英文模式。具体的解决步骤如下:我们需要准备的材料分别是:电脑、Word文档。1、首先我们打开Word文档,点击打开左上角的文件中的“选项”。2、然后我们在弹出来...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
