百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

iText2KG:使用LLM构建增量知识图谱(KG)

liuian 2024-12-08 16:19 52 浏览

iText2KG

一种由 LLM 驱动的零样本方法,使用大型语言模型构建增量知识图谱(KG)

iText2KG 是一个 Python 包,通过利用大型语言模型从文本文档中提取实体和关系,逐步构建具有已解析实体和关系的一致知识图谱。

它具有零样本能力,无需专门的训练即可跨各个领域提取知识。

它包含四个模块:文档提炼器、增量实体提取器、增量关系提取器和图形集成器与可视化。

  • 文档提取器:此模块将原始文档重新表述为预定义的语义块,并由指导 LLM 提取特定信息的模式引导。
  • 增量实体提取器:此模块识别并解析语义块内的唯一语义实体,确保实体之间的清晰度和区别。
  • 增量关系提取器:此组件处理已解析的实体以检测语义上唯一的关系,解决语义重复的挑战。
  • Neo4j 图形集成器:最后一个模块以图形格式可视化关系和实体,利用 Neo4j 进行有效表示。

对于我们的 iText2KG 它包含了两大特点

  • 增量构建:iText2KG 允许增量构建 KG,这意味着它可以在新数据可用时不断更新和扩展图,而无需进行大量重新处理。
  • 零样本学习:该框架利用 LLM 的零样本功能,使其无需预定义集或外部本体即可运行。这种灵活性使其能够适应各种 KG 构建场景,而无需进行大量训练或微调。

一 、设置模型

在运行 iText2KG 之前,我们先设置好大模型,我这里选择的是 OpenAi 的模型以及 HuggingFace 的 bge-large-zh embedding 模型。这么选择也是考虑到构建 KG 的准确度。

from langchain_openai import ChatOpenAI, OpenAIEmbeddings
import os
os.environ["OPENAI_API_KEY"] = "*****"
openai_api_key = os.environ["OPENAI_API_KEY"]
openai_llm_model = llm = ChatOpenAI(
    model="gpt-4o-mini",
    temperature=0,
    max_tokens=None,
    timeout=None,
    max_retries=2,
)
messages = [
    (
        "system",
        "You are a helpful assistant that translates English to French. Translate the user sentence.",
    ),
    ("human", "I love programming."),
]

ai_msg=openai_llm_model.invoke(messages)

开始部署我们的 Embedding 模型:

from langchain_huggingface.embeddings import HuggingFaceEmbeddings
openai_embeddings_model = HuggingFaceEmbeddings(model_name="BAAI/bge-large-zh-v1.5")
text = "This is a test document."
query_result = openai_embeddings_model.embed_query(text)
query_result[:3]
doc_result = openai_embeddings_model.embed_documents([text])

二 、使用 iText2KG 构建 KG

我们这里的场景是,给出一篇简历,使用知识图谱将在线职位描述与生成的简历联系起来。

设定目标是评估候选人是否适合这份工作。

我们可以为 iText2KG 的每个模块使用不同的 LLM 或嵌入模型。但是,重要的是确保节点和关系嵌入的维度在各个模型之间保持一致。

如果嵌入维度不同,余弦相似度可能难以准确测量向量距离以进行进一步匹配。

我们的简历放到根目录,加载简历:

from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader(f"./CV_Emily_Davis.pdf")
pages = loader.load_and_split()

初始化 DocumentDistiller 引入 llm :

from itext2kg.documents_distiller import DocumentsDisiller, CV
document_distiller = DocumentsDisiller(llm_model = openai_llm_model)

信息提炼:

IE_query = '''
# DIRECTIVES :
- Act like an experienced information extractor.
- You have a chunk of a CV.
- If you do not find the right information, keep its place empty.
'''
# 使用定义好的查询和输出数据结构提炼文档。
distilled_cv = document_distiller.distill(documents=[page.page_content.replace("{", '[').replace("}", "]") for page in pages], IE_query=IE_query, output_data_structure=CV)

将提炼后的文档格式化为语义部分。

semantic_blocks_cv = [f"{key} - {value}".replace("{", "[").replace("}", "]") for key, value in distilled_cv.items() if value !=[] and value != ""  and value != None]

我们可以自定义输出数据结构,我们这里定义了4种,工作经历模型,岗位,技能,证书。

from pydantic import BaseModel, Field
from typing import List, Optional

class JobResponsibility(BaseModel):
    description: str = Field(..., description="A specific responsibility in the job role")

class JobQualification(BaseModel):
    skill: str = Field(..., description="A required or preferred skill for the job")

class JobCertification(BaseModel):
    certification: str = Field(..., description="Required or preferred certifications for the job")

class JobOffer(BaseModel):
    job_offer_title: str = Field(..., description="The job title")
    company: str = Field(..., description="The name of the company offering the job")
    location: str = Field(..., description="The job location (can specify if remote/hybrid)")
    job_type: str = Field(..., description="Type of job (e.g., full-time, part-time, contract)")
    responsibilities: List[JobResponsibility] = Field(..., description="List of key responsibilities")
    qualifications: List[JobQualification] = Field(..., description="List of required or preferred qualifications")
    certifications: Optional[List[JobCertification]] = Field(None, description="Required or preferred certifications")
    benefits: Optional[List[str]] = Field(None, description="List of job benefits")
    experience_required: str = Field(..., description="Required years of experience")
    salary_range: Optional[str] = Field(None, description="Salary range for the position")
    apply_url: Optional[str] = Field(None, description="URL to apply for the job")

定义一个招聘工作需求的描述:

job_offer = """
About the Job Offer
THE FICTITIOUS COMPANY

FICTITIOUS COMPANY is a high-end French fashion brand known for its graphic and poetic style, driven by the values of authenticity and transparency upheld by its creator Simon Porte Jacquemus.

Your Role

Craft visual stories that captivate, inform, and inspire. Transform concepts and ideas into visual representations. As a member of the studio, in collaboration with the designers and under the direction of the Creative Designer, you should be able to take written or spoken ideas and convert them into designs that resonate. You need to have a deep understanding of the brand image and DNA, being able to find the style and layout suited to each project.

Your Missions

Translate creative direction into high-quality silhouettes using Photoshop
Work on a wide range of projects to visualize and develop graphic designs that meet each brief
Work independently as well as in collaboration with the studio team to meet deadlines, potentially handling five or more projects simultaneously
Develop color schemes and renderings in Photoshop, categorized by themes, subjects, etc.
Your Profile

Bachelor’s degree (Bac+3/5) in Graphic Design or Art
3 years of experience in similar roles within a luxury brand's studio
Proficiency in Adobe Suite, including Illustrator, InDesign, Photoshop
Excellent communication and presentation skills
Strong organizational and time management skills to meet deadlines in a fast-paced environment
Good understanding of the design process
Freelance cont

继续使用上面方法做信息提炼:

IE_query = '''
# DIRECTIVES :
- Act like an experienced information extractor.
- You have a chunk of a job offer description.
- If you do not find the right information, keep its place empty.
'''
distilled_Job_Offer = document_distiller.distill(documents=[job_offer], IE_query=IE_query, output_data_structure=JobOffer)
print(distilled_Job_Offer)
semantic_blocks_job_offer = [f"{key} - {value}".replace("{", "[").replace("}", "]") for key, value in distilled_Job_Offer.items() if value !=[] and value != ""  and value != None]

到这里准备工作完成,简历和工作需求都已经提炼完毕,然后正式开始构建 graph,我们将简历的所有语义块作为一个块传递给了 LLM。

也将工作需求作为另一个语义块传递,也可以在构建图时将语义块分开。

我们需要注意每个块中包含多少信息,然后好将它与其他块连接起来,我们在这里做的就是一次性传递所有语义块。

from itext2kg import iText2KG
itext2kg = iText2KG(llm_model = openai_llm_model, embeddings_model = openai_embeddings_model)

global_ent, global_rel = itext2kg.build_graph(sections=[semantic_blocks_cv], ent_threshold=0.6, rel_threshold=0.6)

global_ent_, global_rel_ = itext2kg.build_graph(sections=[semantic_blocks_job_offer], existing_global_entities = global_ent, existing_global_relationships = global_rel,  ent_threshold=0.6, rel_threshold=0.6)

iText2KG 构建 KG 的过程我们看到有很多参数,下面分贝是对每个参数的表示做一些解释:

  • llm_model:用于从文本中提取实体和关系的语言模型实例。
  • embeddings_model:用于创建提取实体的向量表示的嵌入模型实例。
  • sleep_time (int):遇到速率限制或错误时等待的时间(以秒为单位)(仅适用于 OpenAI)。默认为 5 秒。

iText2KG 的 build_graph 参数:

  • sections (List[str]):字符串(语义块)列表,其中每个字符串代表文档的一部分,将从中提取实体和关系。
  • existing_global_entities (List[dict], optional):与新提取的实体进行匹配的现有全局实体列表。每个实体都表示为一个字典。
  • existing_global_relationships (List[dict], optional):与新提取的关系匹配的现有全局关系列表。每个关系都表示为一个字典。
  • ent_threshold (float, optional):实体匹配的阈值,用于合并不同部分的实体。默认值为 0.7。
  • rel_threshold (float, optional):关系匹配的阈值,用于合并不同部分的关系。默认值为 0.7。

从图中结果看到我们构建过程中的实体,和关联关系。

最后使用 GraphIntegrator 对构建的知识图谱进行可视化。

使用指定的凭据访问图形数据库 Neo4j,并对生成的图形进行可视化,以提供从文档中提取的关系和实体的视觉表示。

from itext2kg.graph_integration import GraphIntegrator
URI = "bolt://3.216.93.32:7687"
USERNAME = "neo4j"
PASSWORD = "selection-cosal-cubes"
new_graph = {}
new_graph["nodes"] = global_ent_
new_graph["relationships"] = global_rel_
GraphIntegrator(uri=URI, username=USERNAME, password=PASSWORD).visualize_graph(json_graph=new_graph)

打开我们的 Neo4j 图形数据库:

可以看到简历和工作需求的匹配关系连接。这样子我们可以灵活的运用 iText2KG 框架做图形关系和实体的增量。

三、总结

本文介绍了使用大型语言模型 ( LLM ) 构建增量知识图谱 ( KG ) 的 iText2KG 框架。一个强大的 KG 构建框架,该框架利用了 LLM 的优势,解决了该领域的重大挑战,并提出了一种模块化方法,可增强不同领域的灵活性和适用性。

  • 增强的架构一致性:iText2KG 方法在各种文档类型中实现了高架构一致性,优于由于依赖预定义结构而经常难以保持一致性的传统方法。
  • 实体和关系提取的高精度:该框架有效地缓解了与语义重复和未解决实体相关的问题,这些问题在传统方法中普遍存在。这导致更准确和可靠的 KG。
  • 减少后处理需求:传统方法通常需要大量的后处理来解决歧义和冗余。iText2KG 通过采用结构化结构来最大限度地减少这种需求。

相关推荐

office2003属于什么软件(word2003属于什么软件)

是一套Office2003专业版的精简版,包含常用的Word、Excel、PowerPoint三个应用,使用者甚多。楼主如果有需要,请上电脑在本帖下载我的附件。我见过最多的,是2013或者以上的(因为...

电脑鼠标设置在哪里调(电脑鼠标在哪里去调)

电脑点击开始,在菜单中找到“控制面板”,点击“控制面板”进入,找到“鼠标”点击进入在打开的窗口中选择“指针”,选择指针样式,可点击浏览,找到文件夹下,查看哪些指针可选择。可按路径把喜欢的图标放进去找到...

ie浏览器怎么下载到电脑桌面

工具/材料:电脑1、首先在电脑桌面里找到这台电脑,双击将它打开。2、打开之后,在里面找到吸C盘,双击将它打开。3、然后在C盘里面找到Programfiles这个文件,将此文件打开。4、打开之后,在里...

主板bios没有csm选项(主板没有csm怎么办)

对普通用户最大的区别是,符合标准的bootloader必须为UEFI保证二进制兼容。结果:32位UEFI固件只能启动32位操作系统。64位UEFI固件只能启动64位操作系统。由于历史因素、OEM政策,...

电脑中病毒了怎么解决(电脑中病毒了怎么解决方法)

电脑因为中毒而不能上网,解决办法如下:1、首先第一步就是杀毒,对一个菜鸟而言只能用杀毒软件来杀毒了,当然,因为病毒更新往往快于杀毒软件的更新速度,所以杀毒有时候是解决不了问题的额,也就是说很多毒是杀...

win10连接网络打印机(win10连接网络打印机成功后不打印)
  • win10连接网络打印机(win10连接网络打印机成功后不打印)
  • win10连接网络打印机(win10连接网络打印机成功后不打印)
  • win10连接网络打印机(win10连接网络打印机成功后不打印)
  • win10连接网络打印机(win10连接网络打印机成功后不打印)
电脑主机启动一下又灭一直反复

故障分析:电脑开机转一下就停然后再转这是由于电脑硬件接触不良,主板或后续硬件短路,电源故障等造成的。1、内存松了或者金手指氧化这种可能性最大,很多用户都是这种方法解决的。首先我们将内存取下,取下也十分...

如何设开机密码 电脑(如何设置开机电脑密码)

方法如下1.建立开机密码。进入BIOS系统界面,点击键盘的Del按键,点击选项中的设置用户密码。设置完毕进入高级设置,点击密码选项列表的系统密码,点击保存并推出即可;2.设置系统密码。进入系统界...

lenovo联想官方商城(联想电脑官方网站商城)

www.lenovo.com.cn联想集团(下称联想)是一家成立于中国、业务遍及180个市场的全球化科技公司。联想聚焦全球化发展,树立了行业领先的多元企业文化和运营模式典范,服务全球超过10亿用户。作...

我的世界国际版官网(我的世界国际版如何下载)

官网入口:https://www.lezhin.com/这是一款很多用户都在使用的观看各种漫画内容的软件,用户在使用的过程中能够快速了解到各种自己感兴趣的漫画。1可以通过搜索引擎找到植物大战僵尸2国...

我要qq号码免费申请(qq号申请免费申请号码官网)

你可以到腾讯官方网站,去免费注册一个QQ,可以不交费的,是有免费的账号和密码。操作方法:1.打开手机qq,用手指轻点qq图标即可。进入qq后,会进入登录或注册新用户页面。点击新用户,进入注册页面2....

新冠疫苗接种查询(新冠疫苗接种查询不到了)

银川市疫苗接种信息在“我的宁夏”app里查询。打开“我的宁夏”app,打开“健康码”选项,然后打开“疫苗接种查询”,就可以查询到你的疫苗接种信息了。如果你接种了吗两次疫苗,你的健康码就会镶嵌了金边,只...

cdr格式文件怎么打开(cdr格式用什么可以打开)

cdr是什么文件?cdr文件用什么打开?cdr文件是CorelDraw图像制作软件标准的输出格式,与photoshop(PS)图片设计软件类似都属于图片设计软件,需要打开cdr文件我们就需要先了解C...

微软win7系统下载(微软官网window7下载)

因为你是按照名称排列的,试着修改一下排序方式,方法是:在桌面空白处右键,排序方式,修改日期这是因为大部分电脑用的都是GHOST系统,该系统在安装后都会向注册表写入自己的“私人信息”,如:风林火山GH...

xp10下载(Xp10下载破解版)

下载win10系统所需要的时间取决于很多因素。首先就是系统本身的大小,一般情况下,纯净版的系统在2.3个g左右,而有一些定制版的系统大小就不好说了,但是删减版的系统可以做到1.7个g左右,系统本身文件...