百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

23-Python-第三方库Json(python第三方库有哪些)

liuian 2025-04-11 00:59 17 浏览

1-json库的使用

`json`库是Python标准库的一部分,用于处理JSON数据。它提供了`loads`、`dumps`等方法。

安装三方库

pip install json

1-1-将JSON字符串解析为Python对象

1-1-1-语法

将JSON字符串解析为Python对象,然后可以像访问普通Python字典一样访问解析后的数据。

json.loads(json_str)

1-1-2-例子

import json

# 定义一个JSON字符串
json_str = '{"name": "张三", "age": 30, "city": "北京"}'

# 将JSON字符串解析为Python对象
data = json.loads(json_str)

# 访问解析后的数据
print(data['name'])
print(data['age'])
print(data['city'])

1-1-3-输出结果

1-2-将Python对象转换为JSON字符串

1-2-1-语法

`json.dumps`方法将Python字典转换为JSON字符串

json.dumps(pythonObj)

1-2-2-例子

import json

# 定义一个Python字典
data = {
    'name': 'John',
    'age': 30,
    'city': 'New York'
}

# 将Python对象转换为JSON字符串
json_str = json.dumps(data)

# 打印JSON字符串
print(json_str)

1-2-3-输出结果

1-3-例子

实现从json文件中读取不同省份的人口总数并显示成柱状图

1-3-1-例子01

population.json

[
    {"province": "广东省", "population": 126012510},
    {"province": "山东省", "population": 101527453},
    {"province": "河南省", "population": 98830000},
    {"province": "四川省", "population": 83674866},
    {"province": "江苏省", "population": 85054000},
    {"province": "河北省", "population": 74610235},
    {"province": "湖南省", "population": 66444864},
    {"province": "浙江省", "population": 65400000},
    {"province": "安徽省", "population": 61130000},
    {"province": "湖北省", "population": 58300000}
]

province_population_chart.py

用于封装json文件

import json
from jinja2 import Environment, FileSystemLoader
from collections import defaultdict


def read_province_population_from_json(json_file_path):
    province_population = defaultdict(int)
    try:
        with open(json_file_path, 'r', encoding='utf-8') as file:
            data = json.load(file)
            for item in data:
                province = item.get('province')
                population = item.get('population', 0)
                if province:
                    province_population[province] += population
        return province_population
    except FileNotFoundError:
        print(f"错误:未找到文件 {json_file_path}")
    except json.JSONDecodeError:
        print(f"错误:无法解析 {json_file_path} 为有效的 JSON")
    return province_population


def generate_bar_chart_html(province_population, html_output_path):
    env = Environment(loader=FileSystemLoader('.'))
    template = env.get_template('bar_chart_template.html')

    provinces = list(province_population.keys())
    populations = list(province_population.values())

    html_content = template.render(provinces=provinces, populations=populations)
    try:
        with open(html_output_path, 'w', encoding='utf-8') as file:
            file.write(html_content)
        print(f"HTML 文件已生成:{html_output_path}")
    except Exception as e:
        print(f"错误:写入 HTML 文件时出错 - {e}")


if __name__ == "__main__":
    json_file_path = 'province_population.json'
    html_output_path = 'province_population_chart.html'

    province_population = read_province_population_from_json(json_file_path)
    generate_bar_chart_html(province_population, html_output_path)
    

bar_chart_template.html





    
    
    省份人口柱状图
    <script src="https://cdn.jsdelivr.net/npm/chart.js"></script>



    
    <script>
        const ctx = document.getElementById('provincePopulationChart').getContext('2d');
        const provinces = {{ provinces|tojson }};
        const populations = {{ populations|tojson }};

        new Chart(ctx, {
            type: 'bar',
            data: {
                labels: provinces,
                datasets: [{
                    label: '人口总数',
                    data: populations,
                    backgroundColor: 'rgba(75, 192, 192, 0.2)',
                    borderColor: 'rgba(75, 192, 192, 1)',
                    borderWidth: 1
                }]
            },
            options: {
                scales: {
                    y: {
                        beginAtZero: true
                    }
                }
            }
        });
    </script>



    

1-3-2-输出结果

输出结果

1-3-3-例子02

创建 MySQL 数据库表,并将 2020 年到 2025 年不同省份的人口总数以饼状图形式显示在 HTML 中

database_operations.py

import random

def create_table(mycursor):
    mycursor.execute("""
    CREATE TABLE IF NOT EXISTS population (
        id INT AUTO_INCREMENT PRIMARY KEY,
        province VARCHAR(255),
        year INT,
        population INT
    )
    """)

def insert_data(mycursor, mydb):
    provinces = ["广东", "山东", "河南", "四川", "江苏"]
    years = [2020, 2021, 2022, 2023, 2024, 2025]
    for province in provinces:
        for year in years:
            population = random.randint(10000000, 20000000)
            sql = "INSERT INTO population (province, year, population) VALUES (%s, %s, %s)"
            val = (province, year, population)
            mycursor.execute(sql, val)
    mydb.commit()

def query_data(mycursor):
    provinces = ["广东", "山东", "河南", "四川", "江苏"]
    total_population = {}
    for province in provinces:
        sql = "SELECT SUM(population) FROM population WHERE province = %s AND year BETWEEN 2020 AND 2025"
        val = (province,)
        mycursor.execute(sql, val)
        result = mycursor.fetchone()
        total_population[province] = result[0]
    return total_population
    

database_connection.py

import mysql.connector

def create_connection():
    mydb = mysql.connector.connect(
        host="localhost",
        user="your_username",
        password="your_password",
        database="your_database"
    )
    return mydb
    

chart_generator.py

import matplotlib.pyplot as plt
import os

def generate_chart(total_population):
    labels = total_population.keys()
    sizes = total_population.values()

    plt.pie(sizes, labels=labels, autopct='%1.1f%%')
    plt.axis('equal')

    if not os.path.exists('charts'):
        os.makedirs('charts')
    chart_path = 'charts/population_pie_chart.png'
    plt.savefig(chart_path)
    plt.close()
    return chart_path
    

html_generator.py

def generate_html(chart_path):
    html_content = f"""
    
    
    
        
        2020 - 2025 年不同省份人口总数饼状图
    
    
        

2020 - 2025 年不同省份人口总数饼状图

""" with open('population_chart.html', 'w', encoding='utf-8') as f: f.write(html_content)

main.py

from database_connection import create_connection
from database_operations import create_table, insert_data, query_data
from chart_generator import generate_chart
from html_generator import generate_html

# 建立数据库连接
mydb = create_connection()
mycursor = mydb.cursor()

# 创建表
create_table(mycursor)

# 插入数据
insert_data(mycursor, mydb)

# 查询数据
total_population = query_data(mycursor)

# 生成饼状图
chart_path = generate_chart(total_population)

# 生成 HTML 文件
generate_html(chart_path)

print("数据库表创建成功,数据插入成功,饼状图已保存为图片,HTML 文件已生成。")
    

相关推荐

GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!

「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...

高丽大学等机构联合发布StarGAN:可自定义表情和面部特征

原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...

TensorFlow和PyTorch相继发布最新版,有何变化

原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...

「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口

上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...

20K star!搞定 LLM 微调的开源利器

LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...

大模型DeepSeek本地部署后如何进行自定义调整?

1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...

因配置不当,约5000个AI模型与数据集在公网暴露

除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...

基于pytorch的深度学习人员重识别

基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...

DeepSeek本地部署:轻松训练你的AI模型

引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...

谷歌今天又开源了,这次是Sketch-RNN

前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...

Tensorflow 使用预训练模型训练的完整流程

前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...

30天大模型调优学习计划(30分钟训练大模型)

30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...

python爬取喜马拉雅音频,json参数解析

一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...

五、JSONPath使用(Python)(json数据python)

1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...

Python网络爬虫的时候json=就是让你少写个json.dumps()

大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...