百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

这些Pandas1.0主要功能,你掌握了吗?

liuian 2025-04-06 18:06 13 浏览

全文共2252字,预计学习时长7分钟

来源:Pexels


注意:Pandas 1.0.0rc已于1月9日发布,先前的版本为0.25。


Pandas首个全新主要发行版本包含许多重要功能:更完善的数据框自动汇总、更全面的输出格式、全新的数据类型以及文档站点。


在全新的文档站点上,可以找到完整的发行说明,但小芯认为,技术含量较低的概述也会有所帮助。


用户可以使用 pip升级Pandas,以便使用其新版本。在撰写本文时,Pandas1.0仍然是候选版本,这意味着要安装Pandas1.0需要明确指定其版本。


pip install --upgradepandas==1.0.0rc0

当然,更新可能会破坏某些代码,因为这是主要版本的发布,因此请务必小心!


此版本的Pandas不再支持Python 2。运行Pandas 1.0+至少需要Python 3.6+,因此请确保使用合适版本的pip 和python。


$ pip --version
pip 19.3.1 from /usr/local/lib/python3.7/site-packages/pip (python 3.7)$ python--version
Python 3.7.5

用户可以确认一切正常,并且Pandas使用的是正确版本。


>>> import pandas as pd
>>> pd.__version__
1.0.0rc0

使用DataFrame.info更好的自动汇总


来源:Pexels


笔者最喜欢的新功能是优化之后的DataFrame.info法。现在,它使用了更具可读性的格式,从而使数据探索过程更加容易。


>>> df = pd.DataFrame({
...: 'A': [1,2,3],
...: 'B': ["goodbye","cruel", "world"],
...: 'C': [False, True, False]
...:})
>>> df.info()
RangeIndex: 3 entries, 0 to 2
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 A 3 non-null int64
1 B 3 non-null object
2 C 3 non-null object
dtypes: int64(1), object(2)
memory usage: 200.0+ bytes

Markdown表的输出格式


其次,笔者最喜欢的功能是使用新的 DataFrame.to_markdown 法将数据帧导出到Markdown表中。


>>> df.to_markdown()
| | A | B | C |
|---:|----:|:--------|:------|
| 0 | 1 | goodbye | False |
| 1 | 2 | cruel | True |
| 2 | 3 | world | False |

这样一来,通过github gists在Medium等地方显示表格更加便捷。


booleans and strings的新数据类型


来源:Pexels


Pandas1.0还为booleans and strings引入了实验数据类型。


由于这些更改是实验性的,数据类型的API可能会稍有更改,因此应谨慎使用。但是Pandas建议在合理的地方使用这些数据类型,将来的版本将完善诸如regex匹配之类的特定于类型的操作性能。


默认情况下,Pandas不会自动将数据强制转换为这些类型。但是,如果明确指示Pandas,仍然可以使用它们。


>>> B =pd.Series(["goodbye", "cruel", "world"],dtype="string")
>>> C = pd.Series([False, True, False], dtype="bool")
>>> df.B = B, df.C = C
>>> df.info()
RangeIndex: 3 entries, 0 to 2
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 A 3 non-null int64
1 B 3 non-null string
2 C 3 non-null bool
dtypes: int64(1), object(1), string(1)
memory usage: 200.0+ bytes

注意Dtype列现在如何反应新类型的string和bool。


新字符串dtype最实用的优势在于,可以从DataFrame中选择string列。这样可以更快地仅对数据集的文本成分进行分析。


df.select_dtypes("string")

以前,只能通过显式使用其名称来选择string类型列。


从今天开始,掌握Pandas 1.0的主要功能,全新优化开启使用吧~

留言点赞关注

我们一起分享AI学习与发展的干货

如转载,请后台留言,遵守转载规范

相关推荐

GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!

「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...

高丽大学等机构联合发布StarGAN:可自定义表情和面部特征

原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...

TensorFlow和PyTorch相继发布最新版,有何变化

原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...

「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口

上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...

20K star!搞定 LLM 微调的开源利器

LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...

大模型DeepSeek本地部署后如何进行自定义调整?

1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...

因配置不当,约5000个AI模型与数据集在公网暴露

除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...

基于pytorch的深度学习人员重识别

基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...

DeepSeek本地部署:轻松训练你的AI模型

引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...

谷歌今天又开源了,这次是Sketch-RNN

前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...

Tensorflow 使用预训练模型训练的完整流程

前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...

30天大模型调优学习计划(30分钟训练大模型)

30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...

python爬取喜马拉雅音频,json参数解析

一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...

五、JSONPath使用(Python)(json数据python)

1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...

Python网络爬虫的时候json=就是让你少写个json.dumps()

大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...