百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Python语法之:Pandas数据合并总结

liuian 2025-04-06 18:06 11 浏览

Pandas有concat、append、join和merge四种方法用于dataframe拼接


concat、append、join、merge 区别如下:

1、.concat():pandas的顶级方法,提供了axis设置可用于df间行方向(增加行,下同)或列方向(增加列,下同)进行内联或外联拼接操作

2、.append():dataframe数据类型的方法,提供了行方向的拼接操作

3、.join():dataframe数据类型的方法,提供了列方向的拼接操作,支持左联、右联、内联和外联四种操作类型

4、.merge():pandas的顶级方法,提供了类似于SQL数据库连接操作的功能,支持左联、右联、内联和外联等全部四种SQL连接操作类型

concat

concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,

keys=None, levels=None, names=None, verify_integrity=False,

copy=True)

"""

常用参数说明:

axis:拼接轴方向,默认为0,沿行拼接;若为1,沿列拼接

join:默认外联'outer',拼接另一轴所有的label,缺失值用NaN填充;内联'inner',只拼接另一轴相同的label;

join_axes: 指定需要拼接的轴的labels,可在join既不内联又不外联的时候使用

ignore_index:对index进行重新排序

keys:多重索引

"""

import pandas as pd
def df_maker(cols, idxs):
    return pd.DataFrame({c:[c+str(i) for i in idxs] for c in cols}, index=idxs)

df1 = df_maker('abc',[1,2,3])
df2 = df_maker('cde',[3,4,5])
print(df1)
print(df2)
print(pd.concat([df1,df2]))    # 默认沿axis=0,join=‘out’的方式进行concat  
print(pd.concat([df1,df2], ignore_index=True))    # 重新设定index(效果类似于pd.concat([df1,df2]).reset_index(drop=True))
print(pd.concat([df1,df2], axis=1))   # 沿列进行合并
print(pd.concat([df1,df2], axis=1, join='inner'))    # 沿列进行合并,采用外联方式因为行中只有index=3是重复的,所以只有一行
print(pd.concat([df1,df2], axis=1, join_axes=[df1.index]))   # 指定只取df1的index

from pandas import Index
index = Index([1,2,4])
print(pd.concat([df1,df2], axis=1, join_axes=[index]))   # 自定义index

print(pd.concat([df1,df2], axis=0,keys=["第一组","第二组"]))   # 通过key定义多重索引

append

append(self, other, ignore_index=False, verify_integrity=False)

"""

常用参数说明:

other:另一个df

ignore_index:若为True,则对index进行重排

verify_integrity:对index的唯一性进行验证,若有重复,报错。若已经设置了ignore_index,则该参数无效

"""

import pandas as pd
def df_maker(cols, idxs):
    return pd.DataFrame({c:[c+str(i) for i in idxs] for c in cols}, index=idxs)


df1 = df_maker('abc',[1,2,3])
df2 = df_maker('cde',[3,4,5])
print(df1.append(df2))    # 效果类似于pd.concat([df1,df2]) 
print(df1.append(df2,ignore_index=True))    # index重排,效果类似于pd.concat([df1, df2], ignore_index=True)
#print(df1.append(df2,verify_integrity=True))    # 因为两个df均有index=3,所以报错

join

join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False)

"""

常用参数说明:

on:参照的左边df列名key(可能需要先进行set_index操作),若未指明,按照index进行join

how:{‘left’, ‘right’, ‘outer’, ‘inner’}, 默认‘left’,即按照左边df的index(若声明了on,则按照对应的列);若为‘right’abs照左边的df

若‘inner’为内联方式;若为‘outer’为全连联方式。

sort:是否按照join的key对应的值大小进行排序,默认False

lsuffix,rsuffix:当left和right两个df的列名出现冲突时候,通过设定后缀的方式避免错误

"""

import pandas as pd
import numpy as np

df3 = pd.DataFrame({'lkey':['foo','bar','baz','foo'], 'value':np.arange(1,5)})
df4 = pd.DataFrame({'rkey':['foo','bar','qux','bar'], 'value':np.arange(3,7)})
print(df3)
print(df4)
#print(df3.join(df4))     # 两者有相同的列名‘value’,所以报错
print(df3.join(df4 , lsuffix='_df3', rsuffix='_df4'))    # 通过添加后缀避免冲突
print(df3.set_index('lkey').join(df4.set_index('rkey'), how='outer',lsuffix='_df3',rsuffix='_df4'))    # 可以通过将两边的key进行set_index
print(df3.join(df4.set_index('rkey'), on='lkey',lsuffix='_df3',rsuffix='_df4'))   
# 也可以通过设置后边df中key,并通过on与指定的左边df中的列进行合并,返回的index不变

merge

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,

left_index=False, right_index=False, sort=False,

suffixes=('_x', '_y'), copy=True, indicator=False,

validate=None):

"""

既可作为pandas的顶级方法使用,也可作为DataFrame数据结构的方法进行调用

常用参数说明:

how:{'left’, ‘right’, ‘outer’, ‘inner’}, 默认‘inner’,类似于SQL的内联。'left’类似于SQL的左联;'right’类似于SQL的右联;

‘outer’类似于SQL的全联。

on:进行合并的参照列名,必须一样。若为None,方法会自动匹配两张表中相同的列名

left_on: 左边df进行连接的列

right_on: 右边df进行连接的列

suffixes: 左、右列名称前缀

validate:默认None,可定义为“one_to_one” 、“one_to_many” 、“many_to_one”和“many_to_many”,即验证是否一对一、一对多、多对一或

多对多关系

"""

"""

SQL语句复习:

内联:SELECT a.*, b.* from table1 as a inner join table2 as b on a.ID=b.ID

左联:SELECT a.*, b.* from table1 as a left join table2 as b on a.ID=b.ID

右联:SELECT a.*, b.* from table1 as a right join table2 as b on a.ID=b.ID

全联:SELECT a.*, b.* from table1 as a full join table2 as b on a.ID=b.ID

"""

import pandas as pd
df3 = pd.DataFrame({'lkey':['foo','bar','baz','foo'], 'value':np.arange(1,5)})
df4 = pd.DataFrame({'rkey':['foo','bar','qux','bar'], 'value':np.arange(3,7)})
print(df3)
print(df4)
print(pd.merge(df3,df4))       # on为None,自动找寻相同的列名,即为'value',且默认为内联
print(pd.merge(df3,df4,how='outer'))   # 外联模式下
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey'))   # 默认内联,2个foo*2个bar
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey', how='left'))    # 以左边的df3为标准进行连接
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey', how='right'))    # 以右边的df4为标准进行连接
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey', how='outer'))    # 全连接
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey', how='inner'))    # 内连接

相关推荐

GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!

「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...

高丽大学等机构联合发布StarGAN:可自定义表情和面部特征

原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...

TensorFlow和PyTorch相继发布最新版,有何变化

原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...

「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口

上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...

20K star!搞定 LLM 微调的开源利器

LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...

大模型DeepSeek本地部署后如何进行自定义调整?

1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...

因配置不当,约5000个AI模型与数据集在公网暴露

除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...

基于pytorch的深度学习人员重识别

基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...

DeepSeek本地部署:轻松训练你的AI模型

引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...

谷歌今天又开源了,这次是Sketch-RNN

前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...

Tensorflow 使用预训练模型训练的完整流程

前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...

30天大模型调优学习计划(30分钟训练大模型)

30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...

python爬取喜马拉雅音频,json参数解析

一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...

五、JSONPath使用(Python)(json数据python)

1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...

Python网络爬虫的时候json=就是让你少写个json.dumps()

大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...