百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

HBase - 建表语句解析(hbase创建表空间)

liuian 2025-03-29 19:29 13 浏览

网易视频云是网易公司旗下的视频云服务产品,以Paas服务模式,向开发者提供音视频编解码SDK和开放API,助力APP接入音视频功能。现在,网易视频云的技术专家给大家分享一篇技术性文章:HBase - 建表语句解析。

像所有其他数据库一样,HBase也有表的概念,有表的地方就有建表语句,而且建表语句还很大程度上决定了这张表的存储形式、读写性能。比如我们熟悉的MySQL,建表语句中数据类型决定了数据的存储形式,主键、索引则很大程度上影响着数据的读写性能。虽然HBase没有主键、索引这些概念,但在HBase的世界里,有些东西和它们一样重要!

废话不说,直接奉上一条HBase建表语句,来为各位看官分解剖析:

create 'NewsClickFeedback',{NAME=>'Toutiao',VERSIONS=>1,BLOCKCACHE=>true,BLOOMFILTER=>'ROW',COMPRESSION=>'SNAPPY',TTL => ' 259200 '},{SPLITS => ['1','2','3','4','5','6','7','8','9','a','b','c','d','e','f']}

上述建表语句表示创建一个表名为“NewsClickFeedback”的表,该表只包含一个列簇“Toutiao”。接下来重点讲解其他字段的含义以及如何正确设置。Note:因为篇幅有限本文并不讲解具体的工作原理,后续会有相关专题对其进行分析。

VERSIONS

数据版本数,HBase数据模型允许一个cell的数据为带有不同时间戳的多版本数据集,VERSIONS参数指定了最多保存几个版本数据,默认为1。假如某个用户想保存两个历史版本数据,可以将VERSIONS参数设置为2,再使用如下Scan命令就可以获取到所有历史数据:

scan 'NewsClickFeedback',{VERSIONS => 2}

BLOOMFILTER

布隆过滤器,优化HBase的随即读取性能,可选值NONE|ROW|ROWCOL,默认为NONE,该参数可以单独对某个列簇启用。启用过滤器,对于get操作以及部分scan操作可以剔除掉不会用到的存储文件,减少实际IO次数,提高随机读性能。Row类型适用于只根据Row进行查找,而RowCol类型适用于根据Row+Col联合查找,如下:

Row类型适用于:get ‘NewsClickFeedback’,’row1′

RowCol类型适用于:get ‘NewsClickFeedback’,’row1′,{COLUMN => ‘Toutiao’}

对于有随机读的业务,建议开启Row类型的过滤器,使用空间换时间,提高随机读性能。

COMPRESSION

数据压缩方式,HBase支持多种形式的数据压缩,一方面减少数据存储空间,一方面降低数据网络传输量进而提升读取效率。目前HBase支持的压缩算法主要包括三种:GZip | LZO | Snappy,下面表格分别从压缩率,编解码速率三个方面对其进行对比:

Snappy的压缩率最低,但是编解码速率最高,对CPU的消耗也最小,目前一般建议使用Snappy

TTL

数据过期时间,单位为秒,默认为永久保存。对于很多业务来说,有时候并不需要永久保存某些数据,永久保存会导致数据量越来越大,消耗存储空间是其一,另一方面还会导致查询效率降低。如果设置了过期时间,HBase在Compact时会通过一定机制检查数据是否过期,过期数据会被删除。用户可以根据具体业务场景设置为一个月或者三个月。示例中TTL => ‘ 259200’设置数据过期时间为三天

IN_MEMORY

数据是否常驻内存,默认为false。HBase为频繁访问的数据提供了一个缓存区域,缓存区域一般存储数据量小、访问频繁的数据,常见场景为元数据存储。默认情况,该缓存区域大小等于Jvm Heapsize * 0.2 * 0.25 ,假如Jvm Heapsize = 70G,存储区域的大小约等于3.2G。需要注意的是HBase Meta元数据信息存储在这块区域,如果业务数据设置为true而且太大会导致Meta数据被置换出去,导致整个集群性能降低,所以在设置该参数时需要格外小心。

BLOCKCACHE

是否开启block cache缓存,默认开启。

SPLITS

region预分配策略。通过region预分配,数据会被均衡到多台机器上,这样可以一定程度上解决热点应用数据量剧增导致系统自动split引起的性能问题。HBase数据是按照rowkey按升序排列,为避免热点数据产生,一般采用hash + partition的方式预分配region,比如示例中rowkey首先使用md5 hash,然后再按照首字母partition为16份,就可以预分配16个region。

相关推荐

GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!

「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...

高丽大学等机构联合发布StarGAN:可自定义表情和面部特征

原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...

TensorFlow和PyTorch相继发布最新版,有何变化

原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...

「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口

上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...

20K star!搞定 LLM 微调的开源利器

LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...

大模型DeepSeek本地部署后如何进行自定义调整?

1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...

因配置不当,约5000个AI模型与数据集在公网暴露

除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...

基于pytorch的深度学习人员重识别

基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...

DeepSeek本地部署:轻松训练你的AI模型

引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...

谷歌今天又开源了,这次是Sketch-RNN

前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...

Tensorflow 使用预训练模型训练的完整流程

前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...

30天大模型调优学习计划(30分钟训练大模型)

30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...

python爬取喜马拉雅音频,json参数解析

一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...

五、JSONPath使用(Python)(json数据python)

1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...

Python网络爬虫的时候json=就是让你少写个json.dumps()

大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...