百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

谷歌这个开源的数据库真牛逼,竟然还上Github热榜

liuian 2025-03-29 19:28 12 浏览

来源:https://github.com/google/leveldb/


今天要和大家分享一个谷歌开源多年,但依旧扛打,最近还登上Github热榜的kv数据库——LevelDB。



Leveldb是一个google实现得非常高效的kv数据库,创建者是大名鼎鼎的 Jeff Dean 和 Sanjay Ghemawat,目前的版本1.2能够支持billion级别的数据量了。在这个数量级别下还有着非常高的性能,主要归功于它的良好的设计。


LevelDB 是单进程的服务,性能非常之高,在一台4个Q6600的CPU机器上,每秒钟写数据超过40w,而随机读的性能每秒钟超过10w。具有以下功能特性:


  • key和value可以是字符串或者字节流
  • 数据按key排列,有序存储
  • 调用方可以重载排序方法,以实现自定义排序
  • 基本操作只有3种:Put(key, value)、Get(key)、Delete(key)
  • 提供原子批量修改接口
  • 支持数据快照
  • 支持向前和向后的迭代器
  • 支持数据自动压缩,使用的是snappy压缩算法
  • 和操作系统之间的外部交互是通过虚接口(virtual interface)来进行,这样用户就能定制化这些交互了


levelDB特牛,但是,再好的工具也有它的局限性,LevelDB 的局限性也很明显:


  • 这不是一个 SQL 数据库,它没有关系数据模型,不支持 SQL 查询,也不支持索引。
  • 同时只能有一个进程(可能是具有多线程的进程)访问一个特定的数据库。
  • 该程序库没有内置的 client-server 支持,有需要的用户必须自己封装。


# LevelDB的使用方法


打开数据库


leveldb数据库的名称与文件系统目录相对应。数据库的所有内容都存储在此目录中。以下示例显示了如何打开数据库:

#include 
#include "leveldb/db.h"


leveldb::DB* db;
leveldb::Options options;
options.create_if_missing = true;
leveldb::Status status = leveldb::DB::Open(options, "/tmp/testdb", &db);
assert(status.ok());
...

如果要在数据库已经存在的情况下引发错误,请在leveldb::DB::Open调用之前添加以下行:

options.error_if_exists = true;

关闭数据库


完成数据库操作后,只需删除数据库对象。例子:

... open the db as described above ...
... do something with db ...
delete db;

读写


数据库提供了Put,Delete和Get方法来修改/查询数据库。如下:

std::string value;
leveldb::Status s = db->Get(leveldb::ReadOptions(), key1, &value);
if (s.ok()) s = db->Put(leveldb::WriteOptions(), key2, value);
if (s.ok()) s = db->Delete(leveldb::WriteOptions(), key1);

并发


一个数据库同时只能被一个进程打开。leveldb 会从操作系统获取一把锁来防止多进程同时打开同一个数据库。在单个进程中,同一个 leveldb::DB 对象可以被多个并发线程安全地使用,也就是说,不同的线程可以在不需要任何外部同步原语的情况下,写入、获取迭代器或者调用 Get(leveldb 实现会确保所需的同步)。但是其它对象,比如 Iterator 或者 WriteBatch 需要外部自己提供同步保证,如果两个线程共享此类对象,需要使用自己的锁进行互斥访问。具体见对应的头文件。



目前,leveldb已经在Github上标星 24.2K,累计标星 5.3K(Github地址:https://github.com/google/leveldb)



相关推荐

GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!

「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...

高丽大学等机构联合发布StarGAN:可自定义表情和面部特征

原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...

TensorFlow和PyTorch相继发布最新版,有何变化

原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...

「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口

上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...

20K star!搞定 LLM 微调的开源利器

LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...

大模型DeepSeek本地部署后如何进行自定义调整?

1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...

因配置不当,约5000个AI模型与数据集在公网暴露

除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...

基于pytorch的深度学习人员重识别

基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...

DeepSeek本地部署:轻松训练你的AI模型

引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...

谷歌今天又开源了,这次是Sketch-RNN

前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...

Tensorflow 使用预训练模型训练的完整流程

前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...

30天大模型调优学习计划(30分钟训练大模型)

30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...

python爬取喜马拉雅音频,json参数解析

一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...

五、JSONPath使用(Python)(json数据python)

1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...

Python网络爬虫的时候json=就是让你少写个json.dumps()

大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...