百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

用Python开发GUI实战教程:图片转换素描画工具

liuian 2025-03-14 18:46 12 浏览

python作为胶水语言,它几乎是无所不能的,但个人一直觉得在GUI开发方面,python可以算作是短板了,为什么?因为性能…python的性能问题,往往出现在其他编程语言对其的鄙夷中。但不管如何python在GUI编程上,也是有大量优秀模块的。

1 . tkinter

也许有些人不知道这个模块,但如果你安装python后,使用过自带的IDLE,那么你就应该了解它。tkinter作为python自带的GUI模块,IDLE便是通过该模块开发的,也是我比较喜欢的一个模块。

2 . easygui

第一次了解这个模块,还是看了别人的一个教程,它对Tkinter进行了二次封装,使得GUI操作变得更为简单,但同时也局限于表层的使用,无法自定义更优雅的实现方案。

3 . wxpython

wxpython是一个Python对于wxWidgets(这是用 C++ 编写)包装后的产物,算是个流行的跨平台GUI工具包。wxpython的优势在于运行速度较快,但编写起来较为复杂,而且界面美化效果较差…当然有第三方开发的wxFormBuiler拖拽编辑器,能替代部分的底层代码实现。不在乎外观但追求速度的朋友,可以考虑它。

4 . PYQT5

Qt是一套跨平台的C++库,不论是C++、Java还是Python,都可以通过它来实现GUI界面的开发。PyQt5是Qt v5的一套全面的Python绑定。它实现为超过35个扩展模块,上千个实现函数。使Python能够在所有支持的平台(包括iOS和Android)上用作C++的替代开发语言。
如果你对GUI编程非常感谢兴趣,可以用心学学这个模块,但如果你只是想快速的实现一些GUI的功能,我更推荐大家学tkinter模块,为什么?

  1. tkinter作为python默认自带的模块库,无需单独安装
  2. tkinter相比于wxpython与pyqt在制作小工具的方面,更为高效
  3. tkinter在网上存在大量的快速入门教程

tkinter实战

为了证明tkinter的方便与高效,今天来编写一个将图片转化为素描画的小工具,先给大家看看实现效果:


避坑指南

1 . tktiner添加图片

大家看到,tktiner中附带了一个我的微信二维码,这里只是为了演示tkinter添加图片,没有丝毫推广的味道,哈哈…这里要注意下,tktiner在添加图片时,PhotoImage(file='tmp.gif')要求图片必须是.gif结尾的图片,否则就会报错:

_tkinter.TclError: couldn’t recognize data in image file


2 . 关于base64

大家看到我没有加载图片,而是通过base64提前转码好二进制文件后,再进行导入,这样我们打包的exe在使用时,就无需附带一个图片文件了!

1import base64
2
3with open('清风Python.gif','rb') as f:
4    data = f.read()
5img = base64.b64encode(data)
6print(img)


tkinter打包

既然我们开发的是GUI工具,必须得打包成exe才更好玩啊!但是昨天有朋友反馈,打包的地方说的太粗,光看动图不知道该如何操作。那么今天我简单说下。

首先python的打包工具很多,但我一直以来比较喜欢使用pyinstaller,当然大家也可以去尝试cx_freeze、Py2exe等。

首先,我们需要安装pyinstaller:使用pip install pyinstaller。

安装完成,会在python程序根目录的Scripts文件夹下生成pyinstaller.exe。

如果在软件安装时,没有将Scripts添加至系统环境变量,需要手动添加到环境变量的PATH中,否则无法在cmd下使用该命令。

以往很正常的打包,有位朋友反馈使用相同的代码打包失败:

pyinstaller报错


找了半天才发现从python 3.6开始,enum34库不再与标准库兼容。该库也是不必要的,因此只需卸载它即可。
pip uninstall enum34
再次执行打包操作即可。


总体代码

最后附上工具的整体代码,可供大家参考:


 1# -*- coding: utf-8 -*-
 2# @Author   : 王翔
 3# @JianShu  : 清风Python
 4# @Date     : 2019/11/14 01:18
 5# @Software : PyCharm
 6# @version  :Python 3.7.3
 7# @File     : ChangeImage.py
 8
 9
10from tkinter.messagebox import *
11from tkinter.filedialog import *
12from tkinter import *
13import base64
14from PIL import Image, ImageFilter, ImageOps
15import os
16
17img_bs64 = b'R0lGODlhwADBAPcAAAAAAAAAMwAAZgAAmQAAzAAA/wArAAArMwArZgArmQArzAAr/wBVAABVMwBVZgBVmQBVzABV/wCAAACAMwCAZgCAmQCAzACA/wCqAACqMwCqZgCqmQCqzACq/wDVAADVMwDVZgDVmQDVzADV/wD/AAD/MwD/ZgD/mQD/zAD//zMAADMAMzMAZjMAmTMAzDMA/zMrADMrMzMrZjMrmTMrzDMr/zNVADNVMzNVZjNVmTNVzDNV/zOAADOAMzOAZjOAmTOAzDOA/zOqADOqMzOqZjOqmTOqzDOq/zPVADPVMzPVZjPVmTPVzDPV/zP/ADP/MzP/ZjP/mTP/zDP//2YAAGYAM2YAZmYAmWYAzGYA/2YrAGYrM2YrZmYrmWYrzGYr/2ZVAGZVM2ZVZmZVmWZVzGZV/2aAAGaAM2aAZmaAmWaAzGaA/2aqAGaqM2aqZmaqmWaqzGaq/2bVAGbVM2bVZmbVmWbVzGbV/2b/AGb/M2b/Zmb/mWb/zGb//5kAAJkAM5kAZpkAmZkAzJkA/5krAJkrM5krZpkrmZkrzJkr/5lVAJlVM5lVZplVmZlVzJlV/5mAAJmAM5mAZpmAmZmAzJmA/5mqAJmqM5mqZpmqmZmqzJmq/5nVAJnVM5nVZpnVmZnVzJnV/5n/AJn/M5n/Zpn/mZn/zJn//8wAAMwAM8wAZswAmcwAzMwA/8wrAMwrM8wrZswrmcwrzMwr/8xVAMxVM8xVZsxVmcxVzMxV/8yAAMyAM8yAZsyAmcyAzMyA/8yqAMyqM8yqZsyqmcyqzMyq/8zVAMzVM8zVZszVmczVzMzV/8z/AMz/M8z/Zsz/mcz/zMz///8AAP8AM/8AZv8Amf8AzP8A//8rAP8rM/8rZv8rmf8rzP8r//9VAP9VM/9VZv9Vmf9VzP9V//+AAP+AM/+AZv+Amf+AzP+A//+qAP+qM/+qZv+qmf+qzP+q///VAP/VM//VZv/Vmf/VzP/V////AP//M///Zv//mf//zP///wAAAAAAAAAAAAAAACH5BAEAAPwALAAAAADAAMEAAAj/APcJHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIENOBECypMmTKFOWFDNRGTFlkyalEXMjxooAAW4CiCEjjcifD8OoHErU5MGiSFXeKKgMjUJ6+8RMIjaJ0Q0ZYmJkknQgRowAXm9MylSRJcVMZAWigboPLUM0yg7CLSgmqV2jBu/qNTswE4CEylySzDTmxs6s+5btDLB4xU6KxADEHfl3nzIAmgQ6ZgggbcHOBXHovXt0dFK+DZVlEkMsE5pJjWKIweG1NtjbBlAD3U3XdNLSJGOgETO8OPHjxpNPMqlbYb1Mk8Rk6jVG0nAxs73mPKDiwAqvrJku/6MXd5m+8dHoRavHO2PdksmRy4+PBk0MvJ/hW2QOURIj1powIskYYoSBnVcrGPDVCl3FcANqzxFDjCYuUfjSeMosA017Fr1HkkVo4EcQfxWRiNBjbQEQQBiRwUCMGDAAIEYakgTHGAAP+lRPTfc5mAZJ0U0SVQxjDDbWPjIJeWJllxEj0H0CXTbMk0yCVlA9VkKZkFAldSjiQCY5VWJJSyUknUCRyUaPbNFhF5MYB+xU24HQ4TCbCnZmJRxxysxmn3BjTAJTGpNoQtWFA8U00A2TTSLmPjg0+qgYk9E12WoKeVgZRSF2mddK+4Ha0DDYZfJcm0LCZBN42M0GwHetXv/Xaqt5YlfrGITSWFehgS1TKYehfRmRpsAB8Og+p40o6kKtAfBmgVJJMkltXtEW52HX8cigV111BdaDs9YUBrh2PugkQb8CS+xAmg5FUKcffkoSasmCuaxCqwUgyUzDTBLGa8rc4Fh0MaggFng88pSJTQfM+J1W1To4m3TY8SiGDHZmIuFA5hHklkEfOzSMZ3MRxGW8ArWrEkHr5kfSsfUKZFKZCzVi2HBlypaZV39BoyJLw8lAEmNhQBrvvEPedxhLM733YI92bmjZuTJvStBmD2mJrJLsiqhySu8Ki+y9MY+NtEIw1bQCgVt49/TQKpIE7mwJ36gCzz3mnXBYW2T/dWCCrGKXBjHLaDJMZu2J5mnKv3W9uLIvQ04UvfcepKpXOMvJM0kJfsdFwt9p7pWCgOdNLbUGzrpq4GOhpWh7LUfVuFpim2j25JI3V9Ayesooxne3mRSjbDWdhLfoNikIgAorwHC6bFIZaN/wMRiAQxgzEYgdhydb/TVKLNeun71FUS63QiThsPY+N9wI6nAxWNY+S0rz1zuOeBvgmOaHSSJQvzVa3v5k47/VyKBSl0mL1hKSJasZJHbfO0nYHkc+GUluKOazYEIcFIYA3IAYOTFen7yiiUw074P1GxoKqXWDz1FLdDsxkISgM62v3OduslFG0zKxjIHEgD1IOpbl/xglEEwlRHEokx1SwkfBqkWughjMnUL6JTSU3GgFNTmA82qTIM11RQUk2WLqsDOcLXALhwKD3iSGMbJhFMwmwfHbjKSym9jBiygTTGIFMxjFPSoEDVWMm/t2ci3+ASBOPcLh8ySGHUZkol8x6NsNzJi6GDiPCwa6gVDu9p5McMErjnKTSLrHxKKU0oFONNYFVZJBmkXpUcS4I3zqEgMuoEEFYOnRTmr4FQXFAAcLA6W/4PfIsaShb1LBThje6KAXiSEAM5rT034puH3UQ2oEERREtHnKU7prIHcsFh9VArPK+YUgkSnJjSwDFqfcxzCg4tG8xJK0J2HHWcRwxz70sf+CqbQlKyWRzT9VIBAV3FMMjVjJmVzCFCs1JBoOFQgSvTc7JeoxleUsnxQR0qeJnsRDzzNJAGBwvevNKgw42EJNtvDIYbymTTEIQ/PgeEOEFWxFYlCBDAwkG+jZKl3u8VpFwykvDaZsVkhtlWdupzt2fUWkwYGn6K6VIDA+bDZjbNV/xCCt6PinjLSpDQwY0xUz/s6XeVtBWO20wx5yhJR9Sapcu1lUIUZkZn9cJkpqUxLAvSqgg4TeDa4zlta0SRLQEsPnFOkgkoAxLMGBKk/6NwY0rACoF4mdRIjqMqNS5mx92dS8LNildJJEfwawjEnu9pfLCPQ/IVIBYv0HP4H/jKsRUdHrTrAYFawFx2gmgSNxioRKi0zUS028nV0hYjvLxO+oIYrBZQ4Zy77KCTqCHKsKsJtDR/XCQf8ZAz2U2ZpWjRAHzOsRMeApreAQ4z4BwKWK7mMn+7gSI5qNCGclx7XPetZyfN0JI4KruKdGdX+ce+wwJIRY7CAWDYXxSuommZXHgnF5g7QifL2yhTz1FyNw5ZT4fEMUV+K1gjjYqEBidD4fkokg9XsulX67qIDC2MY1dixBpGo1HptMqCTGY1GDjJIMZrBoFXSl+1xpABzPGEVPlvE+YrxjEdXvADd+XAoJctyBeJTIIwbzRyWXYhRnGUcEYTGUp+xkNtM4/8pnhsGZpRxii1L0cRAUM9iGrGc0VxDJqQQ0UwmyZMkxuc1UdvGb3bxmqUp5yzlOoo8H0r0+F3ducs20ppXKMlv19545lJAyYjwhjcUIBiugVGveG9DWaGxVJE2GqFOojMONuiQHcPV6TaLrKx+OGMMIK3GyOatszs1jmN60spEKLIYEjCoOknCM1cmmSQTwkI4BKJmkUpWdJKw78hXdhQP6ZZM075D3kcpym81uiEBjOdIaMAA6LKR1TjeqAbBMttnnmPOAsWhp0K1KWYJeyUx5c16JCyfZt5O4/BYNjHESjppaEMO0++IFqW4oVYRSRkw3ANgN6BZc5BcHjRos2P/9zgg3nMMOdsaEy7zbd9ACljAs44ZokRM9Cp5ztRIDGkBESHQwTvR9wC86jn0h59zHWC6qCNXBKZicXrXFh8X8qmEV2E6CE7pX3eA/f11B6LgTgJ8XnUPNRQiPwiADpUn4mfMt5Hw5PEntoDp5ryqYwbjovANF+z/LpJYYDDBSzA1QOnpd1c8cdHaJZGIyqukL5D3z+NsVTWMHwTwos7KFgAb4noeEkVcGxPb7jPU++jN9Lu/uFUVKSzaNWA3mJMFXUMYJh62STae265V9tOYgv39I8NuC2YRUviF+DhGYnqt8mcWPP2te/pSdcr+tx61nJCnaV+S8j2U6ZnNy+v7/5rTdIM2IARP1nHKBlheDYYCxwgAwEJJ/W5d9NPkgC2SIxWX24YWoUiQnBhj7oF0xdUPBUUNDg2CLEVPHtDfgEW2yAXg+9R8xhQMw0BWSkFIXEwYsNUMFskaZ4A7K0GCMkAbyJiOMER4egU2NFxUPggP9BzL7oycIFgO05z710zmsUneoAx5ZFVPQQoInRRyMYG3EMA/00C9ctUb0AGxt0ioqcgPdQSkt2IL1YB9NFkkxcHuvElY3EkgqoiA1cSCtEgafBB6YxFWWxVPYwUYaw0Yw4Cb6IBBzSIeMICBsNAxscRi3Nl8UV4XLcRCBKDNmMYjoc19V4zeQAiXpxBI0/3FhjJFi97E/KoVb0BJQQMNV1hQGwzBgXDUMPaQPbEEPpIgikTElbEEMSQgAetgLcxgDa2R0MZAGYAQmabF/yHKLoqWLtngUMbgQC5N5MqYVRSRlaheDNOE3xOB9OddwF5NC0hVZuSQG0OAnT/UvxOAfhUIqIwMDazQMcwgV4kgP+lAg+zRqxBCOtaYM7RAAevgS7/UaQzIJNeFDjUIzMXAu9OhD5xKMT7JUPgSQVcgy8ARZ1uc78PUqOGhJ0fZJZgR2JggAkmBqNrhg7UCO9UCKoriRpEiHQFSH1uZxpDgP6egvBiUV4HEkA/kRaecx0FE8XucY+lMScbgCYNQV1//HOUCYjJYEAAKyRsTQDojVC/mkDPRQD3VoTQIRdFChD3OoD0hpTWIwDEaZhKT4XgVDRmmAeSuZGgJpGQLZkgOhDJqAgEujdU2WE+2zdOp0T2EFPT0iFVuQhyDYDsMgCU35SPu0DP4DlXPIHvQwCWwxMpLARvvQhIGJWDbhGo2ABo3wBonCgpIXJV8ZeQ9hmRVhiNmESmI5EPpAMKfFEq5Vg7gGN5UxdTG1HL4jFI1wl/9DD34xJWODJhE1hwlUNfWAWIeJhCTxXnLmL+8hED4Tgw2Ef8WVELhYEcUnmbeDiJ2WBmgATyvwJymRS1HHGCN1VYrVYJ1YmGyUhqroDlP/Eo5PeZj7RBDl6ZlIIglm5w7J0A76AGzvMStxEXRM8RH2CRTJSE9mIitxBEfNM0jf4R25JF8NkhVhMC1TiQaMMAziKWHkoZFRSYcUep5JWaG+Bx3KIIoR2oTFw0hc2ZUcQjCuMi/VwzlNFlw8Ezx/RTwIFUmZ0AiFSQ/tEEliQA/u0JHlmZ9sQaF1WJ70sAVNKZ7u4JQU+J8xwJwi+hMlxxKlFX8pxB/Fo1oCZV77UITjSQw3SR7DwIpKSYdSQiUFcaH7AFHctA/J0IQ7QRsS9yD7UJay04sPYSX1t6TABwC5cW8wAQAzYZpkcnLu2KRRIQYe9yK9kKVgdAOk6EZx//GjlgEDk7E95/ml57kmIZqjXfogcyExqiEJ0bBMYFJ8CLECaeGPdsoUcKSilZGqVuQ8UUeo0kIMKuVIw3CRo2YgVUmOPooQF5qeieI/+5Sm9CAJmGRNqhGX03Kmp+oQnflKUao546YS22ITqWORKdWaergPbpRqeqijY4qhDTF0A0GjY5EhgWGs3wEDJjgbx7eSmMkZlZNx0AF+ATVWeJqCzxoDFNiGDpqNQzkMGUkP0iMow8oWemkQtUaHx/d7IIkG56KHfaIxhiWchyEWC+NP8ZmhllOZlDd5F9F8yBevyiJ7xrN9jvUXEGUS3vEkCXqYhhkVCxYlzxUGajoZF7M1m77npTgrEJIQBioQF5zYpTPSKUvJp5HhJEuIJJRys/knELj4f8lJEfmJPi+GNjC1VwKqorVRE3jooKQiGw7qlIEZc3EBjgIRDY46ECzIgvrQYKiGagZyqGykKD06qathGPGVJ6/xGhrzeKK6lANhn1MrEg9SE1+JLtCpbeqUkyfBGKezBS9ll7IaUw4qjgvjGOI4EbZJKj57NzDQNw3qtRvDUdEBPHJlbYXyEoERGNdEqf/LyhRvMlHYuRgqERbMQ6iCuagyNZX6BJVrAkZxwRZkOrxLKYpX2rnsZ4PkKILtMAlkirCZUCugtyK/9HbIISguoaQbYYj/5X9mcU5jKRZ10UV+Gjcp4nkAEA3K0KAD1q8qYACcuByNqlqBAQDpOIpG6ZHjOq6S4BgG1b69ZQD0MA9/Sxc04VD1EBhs4VYjkhZ1mouMcxGR4UO/iBDCESVW0yeOsltQdX0lpLJfsWANWiNHuCbQxEY/+5exGRlrNBVtNCXsUYdNaayMwGGYsDBOYhU3qgwi6BCZ0KemMpb1EA3gqhmlKmOkWowi2hTZooA5mWGOAQPtE4dsRIriuUz/LNK7KXMfkkB7F6YCYNw3RWqemSuK7icJroiejECHpHijDkEVuFLBrzuT3YuwZBRgjrWWTqw5sOKgF5mmnxQGFymKyyh1y7M8KgADzLMFjMyJ5lmp9cAInHiohamKbayKougO7FnAUWIoMdGu7QbKGzuZ/PESCVEPKBV40LgcYAE3WJRI+spGeCme3Alsd9l5uNQdAPC5W5DIYXCH7AkVMQuVmHCH3dlS0NGzE2mUySAVsukxbrUxq1tCjWAofRHNHMsRfpYQ3Pt8oBJ9BUGPMkIbJiGJfwUq9LUTtVojeqhPU5aNjnVhMSUUWMoYhRkXCRsvlxEtH+IOqnnI8aeH/4dxJcUZuMXgF6IFrFHrtMdJEZxsGYGbSksBdGizGnmnIjcCX96BcFwkFu0AbKTYzDI1HbS6YKQiIIS6CGKwCGjMC67YL4cZvPQAA70gDEXYC1I4PH3DgXM5XkWorJVyHgMhIZ7sE1GCLgeRwGcXbfy5EC4BJ1s3UjeCnafneWXFnhdpxQVCqsPACwu2qAKCWCod1nephy/7lALLC1XRxVKnAltgIICnhz9Nhc42ITAhx697mb0zu+4zQN4xND3CCBeZ1cP6O0apigJBHlUhBm8dBoXZC96JlD0qjrA6DL38vo5hLv3iDvPQiTIhHYjDLJOwDBNiyuymQeB7EamtQf+RobhIsz8pwjMKAkbemK0cekMjI5Fs1HtbcZju4A5eQYqXMRm9N9RwGH8rUDRtDEaHqk/Z2AjF98DGIiGGIZgQHKcPId14TcFF1NAQMcFPIiZ+UaJDUzRx0yxQdx+IVLmHSYqWRKrLAUC7vL7UODLC8B1QMdwp40pJSAy0gaCkbdmWxEb69AmxRAwJnC7RCSaaAA2a8DuVZ79qYYzAuAJyWoXKkCcIUr4ncQPcQa35pIeiOA/iaVDOC2yGXBJgrAWL0KAMcdbDEHOKTEA5GpgC0ZgEYtoKMRXLMBUP3YJblxsPQSqzkSA48X6OZEa5nEtAKAmDTIpJOAlvvQWMAMb/zPNvYtALhCogvVC3HBW8Acul31ikcwisSCITWzm4BFEPpe1Pu/EcEeEZppx2lRlKFfN9S3iXABWHW0uoPJwJGimeZhRT2Zl6XCUgWyEgdegZ5zquPXopbFRrXIPYlkEJjkkokEc1lDcGE9JfDMUsHosmogqyDQGyaNZcmhla4JIYO+EUeSgQVb7GH0gSeBnf+qBP0NDLOknbfWtwXVoZR1s1RTyWEj6ADT0JBGK0bAYmSgIlvdBfC50XYiLd63bUEIFA7BGAY4kQpJ0J8gQAOHCVodvVa0SGw8HZuToMvcAID8mgb+3MblSY4kk1v5Iuz1spvjIQw4BNd70aY0Eh/wg0lkTdX0rt1Eht7SIBgdtdEMGmNCoQBvWQDJ3IRrZ8l1WuTBoJ5V1Ne6BLE5gUE9ExMhHaEM+LL0C0DPUwOA8eExSiEMRACQuf1y9OzuC+D73QCDbtikGJo+5XdyJOjjjaDr0gU7usyId8N8887OgpEenIMlCB7KzRCCpoEIZyuO2x2t/r3YTY3QvBHsGUIJ9oGYwQn6x4l/5LR+fpFRN/pYS6E17OELbppSVvW891GYgTBgdACRliGcowBnFRQp/2FxISURfewBEsM1ZvfJtywTnLEIwP3k4tAyqlr0y4vqto0qhXhFDptEHriiZIj+GuuQaXKTJW7PZhKJPxHP9/HxPp0UP2sQ/FEBlfSfiILxCTkFq1f6rrdSYWT5eo6J4cGABNSLMEYZfLoSYU0atQ/uIZZ82BCxPQkQaVheAC4SvU/7qjM50OHSTaCmyQDdngCOWMrRV6OJGeKehvbd1v7xBAyslU6TEllNSJMUMWAvI/jp9fCQ1UM+eg0ugAsU+gQGLKBh5URiyTmEz76D0Uw0jSsF7DHrqTJCbGpGGZJArUR0/ZsBVixEjKREwgPU0DEx6EqW+fTHoOldGrB1NnQ4EJiWkapnNgJmXLFE5SNimNGJXLYBKD1lOlUKpVhaIBIHRSVoEAbuwDEBaAGLAxhAIwqzPsvhhkH+oLa3H/q8Gg+tpuGStJUk6HwwBwXLF2n9+gYLlanelQYCaZiAXGAEDsZ9W/j7P+rKx2ksAbhx1/hmlQ6NR9ynKK9VqaqjLRoQWGYbiv3jC9FCVN0qeP2LBJMWCEIUZvWIzGpTNJYiQGNj2ZpFlXlakvZ03pe60O4wtNWSZNrXWS1l6amBinOlvX8w5a/foY7Teu15kGjaRlISdVlFRxpjvaK1aEeWgY4FqjZxI0JjFpGIOKQ6wx6UKaqZeoqppkQoHSMG29ehRKDz4PPwTRKmIkiUymYXg7kZeVaANAhTDqScYdZcKQ5KCI9smIEcnWc7CeByfhiyrSZBujQ8SioYcSI0Ok/yqTwwBAg8mBxloMACQ1aW+ShcZKgxgDyAovBi4Moge/vwojBi3ILGIrLWUio4cYGAKoTbF9bviqtMjMK7GmwfaBZs+YAChMI9EA4Omz8oKcMtHPMtPqyc2kZCvKfZxEj5gYbphEkzRUSGMSYgIgC72yMkHvREYAmKg5tFQ4YBiZVMgzTbpiCCMTLe3kIs83vZPpzaBEGgk9ADpcRlAxYBAo2SEdoycaRrty1DFEKQUxIaSW7Cmh7VoMK7h9JpEEjYqCGwaG/+xsT4ziZqupHuQkWdAxB+cpcyLEvIsmRE2I6RdbgauKwYD2oqyvvIA/yySN9gKgVYxh4xRQOI3EYP/Oxy3aY1SlmuJkZJhndQpptxNPvK1BRqddryCWBx7IOSOfM88g1MgybUGZr0MwBlhVaEu0kdwlJoy2UM2tkTCO3WcqPz/mtLCDnh1pmJArus+qeuhhrGULp16GZWKyI62g0V4WSIwnyVIrT5jQMiwstgfaasq0EIMMMrQkodokyAxyB1AAhGMaJr/CYMQ7YQcSTpKlQy7MHQandrJaqwKdVKgOobRsyswP4ryq1mgO7eVDxXJboGh2NumG9g6AAfYANm3P9XYzKg4aRiRSJrrd/iIKJj+Lqrq1lmDysaA4H/JTc5HhG7mnl0kzlaCvY4aZKvdisNQqZQoGur0V2oP/oV3b24MNYz/dQUOMSaVLCgBGLE9P5N7tZZ7b0pqnFODs//9QJnAlg8LpRCMtQp/ETnITZTCCRgchXFt0wj/GEWNyIKIgpW4CQKtkxklTstQH8cY2v0ztAGgI3mPmVprtLCMT/4EMR4bTlowAoDjEcFGNJmirx4RBKK7bl7JiUJM3TUUjIBFio9LGLNUNRAwGuMqTeIIVJT4qhJKqkrUspQnPZCIMojrIAVbYk9KowCSEOtHt1DY6GMhgjCD5VdrM4iMbpY4qhcMBDKYCAFCkDYrU8uOUpoKGAFxlBZGqYt0AyUH16GMZ3FuPRwygrxNVZBhi2IIOV9QuRnbSk53c/173QoMUtFElVW+pR/J68cVJACg67hADFzQ5MJFQpH3C+2Qun+KSIO3sZvsLTQprVhWcOOhSGTmRCsTVNNjQyyXA6pZjoBKnkWRklsM4XtNWs83RwEd/HqJiV/IUzrLEjUpwU4tn7GaelaRTLgD4ouqQA5k9qrMr9jyIO5x0ki0YhBGTMwBX3mS5ZH3Oc2cRpbXeGKINxcxCZYvKL0mHkJmlZ0MPAYmNalRLiUwCIgcaXUW/cxy+JeNkHlXN1EgXvT8JxXIEgZ4uheKe0GErE9FiUEgyUZiQ0EYS8xjR/ODjyFoiR2I44Q+bdCI1mTbVqa7pkXQsEh2C8EYvt3kphf8c6BsAbOEkCsogTLL6VBCJUKyHWUFCH6PWSvVvIMURydQIxR/0RGSNfBKNGHyFpJG0xyHuAAAmlimQQHnsiF1hqlAOC5axCkSRMHnstdQy1scexKw1Bd1CqRQiYpEMo4khjHAcQqO7hqZwfg2NX3Xzl2Twrx5Mi4bRelJAqjxRkIixrU7IKdm3NZas+9qpO6gzEzpm9CD6qAtHdsOLYbTDQ8cJzgUREtbfVrdNrmMraOqhKwTxRDrHBS9xiZi4WnZEZNQVikgwlpjVsNS6AFScS+4pN+9xSxntWwgjWOi7xtCsOCVzZYBqo6DqyYZbYbjJMknnrX0sQ6T7eiY3tdv/GveqB527NcsvKXO3p+BADC3ZFQAOeanCCca4YZklPQDLKgeWGJ8DuSQAjieYxe0DBviEjLUmlWOd8Bg0nQGhlMy2mJjZDHUiSo8y3Nc+GdwgIkERGU0S9Zz/Nu1ES+UILyYBA450VnTJwE00HTuhl5inwtYjbPTKDJo1o8qTeYMUaIhxAw9rJAYBSEl0+Fdl9tLEgm/dH294cZKK+KiUXp7gexVt06W0R8QBgBPzHBISqhrzaeyNiXBUFYYtlC/MVXHzUtG7aNCY1bKHgSSlUq2pTRVJE2IQo0G2thI/GRokQZKJk8NbQVa1siBe1chN96HXgaDHIMSOE21Vp2wD/7pNUGjg8B2nGG3H/tExph7K2rC1WSfNDmcXs8mlqVPcSj/GLNKd7UQY8ZAYdFp+jInBiKVyp0OORFBvO7PaqqhvxEiWnAf5N6lnKgMEiSENS4H0EJmD0bc8JCeTk3S5qWrlSzqQ0z5rEUOcC5ICySixAreu67DL5jqLAQ1jMEnKxYADMDJcMRB6+cKx813ZTE4f/BGGR5SzgvJtYQtfPJHyejdqkK9ndAixsFhwJuF9LsUkJz9Q+9K6UdZ87GN9NrSsHr7rAO0mI2FQgc9x5T6RSQInslnN0Y0u4fBkyyr8Lue4XnwWpcf9bWZJw9JMkoawoLwhS+E7WghnweZ9VmYfoplqzS9dnMLQZlVtYeJss5nSg/B4oOuJc5DZMneFWiVR3IGGrm6gEFAQAxTKuN6U6j7kp/SuPR5eiodPHiqDr3zljNASwyFkdeqAddJ0vLp0lncyxIVMrAhhiOJI49udNMklZ/b/vHpYk5Q3ZKL6mcA+UTIEEzgv9CD1wNJGUN6+MbRv7yrXqxhugsqGZywkwiG8YoabGE0nVSLCrgo0YsCdomcPGsTABJN7g+ubhDdAAzSAPs3BijGQj9qTDwZMuTRgwKVoBDEoiUnJGOahjpqwiI+Jqpr7q5OxiG/arva5gW/qP5fCJ0eKhu24lDTIBKzAvuxqq6bxjPEwCVIxuPExic0APKBZigpJOQliuM8ajGGRDhzwIT0hk5k4GWXBgarYLpw5NjtCDGi7rX3Awq6InhXgid7QirvhLZ2orAnqo/siBhlcCMpgGxEyCCVDAxzgksdbioYwuTFAC5OwQ0cjDuaY/7Th2ql2Kp+ZSBOVkInZwIjToraDwITN2JEbkLfPgDvJmsSXokR82i3mKzXsA4XuQKFSGwsPQ7lJKL9S1BXAE4MxMJClQLlUBLetEYlY5MATuTri0rNJO5nAAQ1N4A48ScFOKgpMyD5exJNNMahmGY5SNL9UbB9RWYZXc0BXZMWT85vgWD8NJIZkiK6P8ZGr+5iTwT9ouS9JwJBf/JAlSQ9dyT4nqbv0UIiSc0Xycx8HK5pRPD/0ax9CCY6HuEZlaIebKqZuLKaF04d22I3MqQ9uggYZwD5nWo9okS/N+Qy1YyfQSA21WES0iIZfQqfHuAE8PICD6wxXvBAE4ZJGCP8LBJFDkhy21Hi/ldAHJ6kLmFyJWWsa3GsnEwMdgYISLEFB7pOiszhGmACyrmCrzZImI2E9yyqIX0qh7RDF9EG5j8SvNGiEk4sBwJM9lMMBD2M5ruQCHGgEgGSeojkv+fNAYtmqvRMPzSENLckEHPhJhPi8l8mE1AumobBLT3oTtEBKgki5UrzDCmzFOzw5SRgDxHRF9PNKMSCgL5JFkZgIWSlChjsRMQiAFTgACWIzXUGDiTLHp4oGJ1FGwUTFgytMZXQ6V8QBrgzMwICT9TuZIny/h0iO8JGB2cmEhUEMScCBTMCENAhNz7ub97gUedu/xVhEotwMR6u9LDmjZkT/izoctvLjwTFYyRyMAeyUAYORgSFyCMKZH3pQDod4uL4CmvFBCxxYgeb5niXhxUwAoq7IK2f7pi20Ci90rOLURMjSNhKbkjbkvK7IMLkxuBaJvbFgQBFDzM1AEDw0gKkEAFE0UMgIyxUwiILwC9zThwNYgZfcmuEYi3gDABmQQ+e4t2ASoKBsySqqCrijDJ6YxKH8LS4yOKeLgTpLzPIzuKssxZJbzVYUxZUzURONgdwMC+FSBl6YiIVbP90IgxPpjTtzzBVguYkkhk+Qj+H0JCfDk81IP/OjRsfEgXaJR5QL0sD0SuxcORyQARnYgu+U03hri3/shZ3aRw2kkZ2y/8D2cKMDkIHOvCUupQq8hA+OXAFWLDgcHZ86k8AxjT3bSzkc4IKVq9QjzVE5XTnIgIGqCZlYrLqisSSNCIAmw8wYKA/ECD2TMyXHWJJSghkYvaOMLNCw+BIEjQ2nS5s0aIkAmJ20ydVU7DvHLFHH3IdoaI8xGLY7E4jZUVarEgiLCK0ldAdyAYDMDFSwSEArHIiA0jGEwpv/XI/QuzYjCR7UKImu3LuFMAlPMYkxEKB2cdNUXAgPuwE38rAcdcxUPFJO+c7t1IjvdBgxOBcFoQ1lcAfIkVK0CADYGwvfWgZOeakdQQxhsixYNY6hmMv/QQ19fdd3HdPCXLnACICPlP9UxjQJN/3X7yzVI93MOYUYLRGGoHuIZLgNEbyzFfjOMjVRx5A9Qs0lJVvNk3067qRUDyMgb2tNN/WwGbDUf23Z3HwdncXUf5UfGRoG4eIPLTuZRnidI8VMULEKfXAy4QRasYrEoShOGjUPOwM8fWhFo/Awj7I9tNjZethXyUDaEmVPTQg/HNAHGUCAFeDFGEAAyNjMFSgIRqgIFbgpsLIkhvVCYnBTSLQc/VMJ9WuNGBCNSXCbA0jAgUjOHpsKAXKp5SRDfIos7zMPPARYO1y50li5zTjaFinTRtgHpC0NNyIgSj2ApilVsmDZ0pidwPhXJJGYragIXZyIrRifADD/iLYgIPphmhN0CckqSrjoz0XqrbTBJ1mVKSXjUZTDVzJNxaPdV6TFgdm5M7CtszBgWUw9gMxM3KiVUw/10LbQNE3rBUtyoMzUWabVScgykLMFoPQrufFLWZUTWUp90xztlQdWWSJ1U0w90vFJ3M003Bjw0DltjyrYgp3KWpM6KUawUkul1HhTP52IBpTY3oPw3PTzUhmm4RnWNYFDDQBYCmrkyvIVxTor03t9U8e817AE21iq4A2WgQNggQ1mgfxd4g3G1MDgm1ykiIrIBBhY4CI9gBQdCBgMXaLM4TEmY9QQGPDVwicZJ3vq2MDDTthNWn4NRbUZUTD9ToH4TrIg/9KweBg10RsqHbYVKKR9mJ0u1t+waBz5uSSBoFq7ZbaWmq3+pOMypmSx2DzNM7qXSoqhmIpNHginQA0YGAOP/bCUdV+NqDM5NdFMKFKVNNFJ4Nl4i2LNfGJBflmHOVx+fRgevA1NEwNM6IVJSA4LbrKGfaN0xFgnquRlzgoXdKyNHZjVEovt5OFJXeCVc02krdqARd85feAn/lr2nZ3Z+c7NHFz8XQEVACtiaIdKGg4VUGUxgYy0lZLOYGZKJtT2YUWNCMuU7WcZ+OcirWAT/Wf8XdkYqOUAGNz2LVVBhtpdBpB5uIlhwIRh2Bhy9lPMHAtofjszdgyssGQuxc5QdP9dIlUBpN0ON8obLogBhVDpUi1ThZgdBACAzQwAXtRMGVAGluWOnN7p2UELGYqB/MDi9VSy7+Tj7mhpgRhUq1jqg7DnAa4tj6680uXP3zqglLtWk+hdY91pYs3U3S1TeHpTPUHq53UIX9Xj+a0JDyWLMoU0tDgRVqGNriiJYTuA9U1JLtrNS+63apnkAfXekAYdGcUisnLFVmy0VCZS20PaOT1agubZMr2z+hVnX403zJ7fzBxnSHOjqjGqR5udJj5Scl6JVHWKaakHaflktItqwW5JwmaS9KNtJ6vtlE0fJVw52PAw3naUBfZKIwboed1XN7K9TG0ygC7SI1XZh+H/YA7WTDrdzA5+bnRm30m4D3XTzPGJYnBGC2JwsGWgBwdDj3qAhtXOifpY7fGWjqgIbMuy7RV6b0q55/pGjSVMGx0tuZ3lXeAOSyPl3RyV3pWL0woeZ4Ze4pye2qk15LCYH3LpBUZQAcyW5ZcNi+6IFtZADweruYQZ72j58H7RG52c78GW6g+x7xSX766OwmWoYK8o6314UzumY0y127Q40ihZuUHWzLcW5GZFAD0G6msV5LzwC6+ATYX+4yLfjGVQAStJCCgxip5wsMoQDbyl6tgmcTMuShBJcfuW7zJNOey+gV7RWceUQGxeCDdqVJYt0qXY2UmQ05Mj595w61HW/1mHge7NvtZ2WwjYIFnxoV8O/ouCaBiRSMOCKIrxZg3NFW8keW2ozvL3Vggm+fL6jkInsmakJdIjjeDiVt+BTmJVJvV42+wDn9/nju7ovrPMDIteyA8LhJUVONwER2oU8hZvCe/pU/QGIxbTkEPZLnEth21rEQsafJS6GwgPy4GUM1EUfr2dRWHe/W/3eOCdxdRYlgGSBVRB5uAnnh0BaPU7CwtXvw1JIHfnNlxBjusGy/WCgHfikQzWePR6iHTHGPYQ0TAvFwv8HjY5DEsckAw3ugFyDgBsOlIC2lcDsNLPruDC/eyA5Y7X+x5fxWlS2WkPxT6fTvcYmCHKfV721f9pyFgG5aBHFiqKpjGbqhuDr8AL2a4KkD5x7WEp1EB2Y6cvJ4IMrt5dYh1eZbBSyChSudnOZTWLZRgfZa3g3XUjtoA04s3RQC6kZcjMKIQMSFMmMRm2UuXjhs3dYwkMBjMK0YB38dC/rLh33MryfsuufUdxsch0gUA513xT9DVwkXfMtlDfcc9NWidmqU3ulr3WEs3s6BYxm/ZVSPPVnulzcSZRb8sEB2ONf/GW7qB31gBv6SAgmJ9qzn/7sBAl9BN9PdzJnM9vFHZs4XYPcd/Z/y5Sb7b2hC/TgRZwltVsDs7NBN9zkvXjPvfQwyVnDI73gkiG7hj+XE+I2LL50Vf/OTQIKM/3ELe/5xW6bxsB4uIu7iMV96pdbsfcgoF+WTm9V+6v2hfHbKltX4Ym97j21WtlYlPfdptGlMkv/oQABQUpPV7v9RG/9GIHiH0CBxLcB+AgADQEETJsCEDMQoQQB4qRAQAHFzEHK2baJyNGjH3LAsRIs6+ixosfAYAMIJDkAZYyUuKIMeZkDIsAAlw8GUDnARkrdsbgiTCkmAAu98EkilAZMWX7lGkaJnCYskwJlSmLAWAfDodix3698VVgQoFmC7JFKzEi2Y1wew4cc2OFGBxicuLQqynngUliDqyIkalizRhcZOAgKTTN4I8rPn4EyXgSDhmViwZAU1lp/1GvhI0aRRNjxQExYwiHHhoDB1dNUJPJphpVTO1JCrfE7f1V2aSBk6RODd62IEOFA30/nDtRoN7oecVwwcg4J+qPQXMifs03BmvKrylrzml5PI6hO0meJuyepFGEAQ6EBq99qJhJxDLtJ1YVVFRQcRXgMvWYxdxYxyl4HEPPGeSbgwyFQRBKGFl4YUXgFZaTZjV9VFFlM80HU4gf3UCeDDewcB5QKyAA0gEBrADfTgzBJyNnqBkFTYBUCZiJj1H1SFA9Cxp55ILJzUWWcm7JRZEMAUxHUoaT1aTJJC96BeJ+HypTHpaTeVWZJpmsaNGJMZT5EQ7EcEbUT12RxNAKcv+ukIkmjimTHk8BUJWJYViJcQMxUU1V2z7EiGQYV4IVJJVpyyhT5JGHDUQog28tB+FcOBA0hleZaRRAX16dKMNU5rFUU6oymLTXUvMNFZRLy3gnk0v1EAZRekeR5FN8ABwArFTzoZqUVwAUqklCUXkFzTCaTAWVQMosQw8AadRj61kDQVNPWFMtg6RGyzWJHELnMhehptCJ8a5e78pQHUocMjbTvfaelll69IkHUnYcmlfURwiwF+WNoPXZ0I2ncQbeRkAKWJt/UBGTjICTRrMPPVwJdG009BSoDD3RKIokyk42t2lv7D4pEGL4Wnhvhx0ulll1bI4nnmbu8TwweQP/T0Zfn6EpzDB8odFntLDDLTuMfxdXrEmAUXUsqaTW6jPuMltzxRWlKRupJMtxubwyzHrR21d1WzDmdsw4bJFZDCCa5yHQp73oL4dpmrd3DCzEWDRPRR0UX+ECaOhzsgAMp0kyxABIm5AZE1gPyZNKJRU935J8rdgoN7jkWGff8OlQmY1xUGbBIbbRSoqF9VBJJ30kEGAsFfVS7DkdVBREg6nHUp88uYWUUi+t4OkYNGarKFVW7UO1VmJwFZOkxCQ0rlfTZitV92gptxZb5I+dLuliqdsuWOlNVxhKmYhaWGZs0s2hGJmUl0Ya5mW3AmRgNJn7UGYSoakRT2AgIyml/8RxMcFLGhwzibvo5CEdWdaAoIIbqOhGQGII0GG+9kGuZKJJaBhXooxTEGKoMEnsW5dzCJIRvcyEX/fiAnpkEIYb7uxn5MlMYegTsBItLmmgOciMYuQQGR1gNJwRnOGWh4aoQA6DGawaV7omKZFl8GuaQ2HoXHiQc4VxdANhGw01s8OcnCpmFdmhZtLEs3/V5Ccx0NKLNqMlIxqNJ6NBWsNksLQ/smYZ/aki1a5YOcxl0WJRq9znwihGtEmSIaeD0gGq06ZJMOaDr5PdmBKzghNZ7zqEORUA9ggAobQJB0GJUXa+9CalyCdbk0DaJPJEGKLoxCIBuAGQogKNKhoGQP/KMBlXDCMpA0KlI7YZl6EwtaBMXPJ8Y5Rk2RxUk4vgsFXBqQkXWIfDVb7mIB95le/I6ZWcGAV4J5nM76QEFhnFE3H6eNDhinJP9rCEaCxBSBr2I5BCaSWgxKGi45IJANtMJVr3tBa2OrKgch2JbNg0o0DopUkO0e1epbrXqWgWGvKEdDOOKcp2BqaUPg2OabU83GhkRRgEwFOmhYpWf4wppIoV6orRKxOeohZJbLaFITEQDBrEkNSlKrWpTF0qGjAKFk1Wh6qnyslirlMeHc7RO+WRYwwUl7T7zLQ9qBlK8WqENNQ47CfueVhh0oAnnPKncpWTTU+FVBWqEQMrUZGaFFEzhaDBeooi9YvZeFCSohQtho1bzVuJCtYSx4Tnju0JgApWuhO0Gu5wnuVjUc5KFPrgIJf+iZzkouUji2UlagDCKW1Wu7nAsmWwtnWQDDqSl5DQozyrSsleXKcZ1tUuQ7iLXZRe0k7FxZNXxjMIqXxyFqPOaZXRTcOMlOcpzA3DAAuVzVSi4l0ebe5iApHNMB4yqfDVIy37CLnfRW2LoAlRBDcgykT/EqOZEuHgLyk66/L8G5j+fYQ9AETDWUHzsJ8AaihjQINSAmO4d9noPWcFVIyUascxZAJAkBES5qIimOxN668exCt+ByKJg5IxdPJFUGEFstWanOlfj52ReWgZJbYKTkzsBM8CaTk4HS2MlmpFoFhWypmVomaztHwcVqgXJEhiMHtejErYaKvlLXO5y17+MpjDLOYxk7nMZj4zmtOs5jWzuc1ufjOc4yznOSMpIAA7'
18
19
20def dodge(a, b, alpha):
21    return min(int(a * 255 / (256 - b * alpha)), 255)
22
23
24def draw(dir_info, blur=25, alpha=1.0):
25    base_dir = os.path.dirname(os.path.abspath(__file__))
26    save_file_name = os.path.join(base_dir, 'final.png')
27    img = Image.open(dir_info)
28    img1 = img.convert('L')  # 图片转换灰色
29    img2 = img1.copy()
30    img2 = ImageOps.invert(img2)
31    for i in range(blur):
32        img2 = img2.filter(ImageFilter.BLUR)
33    width, height = img1.size
34    for x in range(width):
35        for y in range(height):
36            a = img1.getpixel((x, y))
37            b = img2.getpixel((x, y))
38        img1.putpixel((x, y), dodge(a, b, alpha))
39    img1.save(save_file_name)
40    img1.show()
41
42
43class LoginPage(object):
44    def __init__(self, master=None):
45        self.root = master
46        self.root.geometry('%dx%d' % (450, 250))
47        self.page = Frame(self.root)
48        self.Dir = StringVar()
49        self.Port = StringVar()
50        self.path = StringVar()
51        self.dir_info = StringVar()
52        self.create_page()
53
54    def create_page(self):
55        self.page.grid()
56        with open('tmp.gif', 'wb+') as f:
57            f.write(base64.b64decode(img_bs64))
58        self.photo = PhotoImage(file='tmp.gif')
59        os.remove('tmp.gif')
60        Label(self.page, text='''
61
62        ********: Python
63        作者  : *** 
64        时间  :2019
65        工具  :Python 3. 7. 3 Tkinter        
66        详情  : 图片转素描画工具''', justify=LEFT).grid(row=0, column=0, columnspan=2, rowspan=1, stick=NW)
67        Label(self.page, text="图片路径").grid(row=3, column=0, sticky=W, pady=5)
68        self.dir_info = Entry(self.page, textvariable=self.path)
69        self.dir_info.grid(row=3, column=1, columnspan=1, padx=20)
70        Button(self.root, text="选择路径", command=lambda: self.select_path()).grid(row=0, column=0, sticky=S, padx=20,
71                                                                                pady=5)
72        Label(self.page, image=self.photo).grid(row=0, column=2)
73        Button(self.page, text='转换', command=self.login_check, width=10).grid(row=3, column=2, padx=10, pady=5)
74
75    def select_path(self):
76        path_ = askopenfilename(filetypes=[("file", "*.*")])
77        self.path.set(path_)
78
79    def login_check(self):
80        img_dir = self.dir_info.get()
81        if img_dir == "":
82            showinfo(title='错误', massage='路径错误')
83        else:
84            draw(img_dir)
85
86
87root = Tk()
88root.title('素描画转化工具')
89LoginPage(root)
90root.mainloop()

相关推荐

GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!

「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...

高丽大学等机构联合发布StarGAN:可自定义表情和面部特征

原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...

TensorFlow和PyTorch相继发布最新版,有何变化

原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...

「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口

上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...

20K star!搞定 LLM 微调的开源利器

LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...

大模型DeepSeek本地部署后如何进行自定义调整?

1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...

因配置不当,约5000个AI模型与数据集在公网暴露

除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...

基于pytorch的深度学习人员重识别

基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...

DeepSeek本地部署:轻松训练你的AI模型

引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...

谷歌今天又开源了,这次是Sketch-RNN

前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...

Tensorflow 使用预训练模型训练的完整流程

前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...

30天大模型调优学习计划(30分钟训练大模型)

30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...

python爬取喜马拉雅音频,json参数解析

一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...

五、JSONPath使用(Python)(json数据python)

1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...

Python网络爬虫的时候json=就是让你少写个json.dumps()

大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...