10 种创建 DataFrame 的方式,你知道几个?
liuian 2025-03-11 18:02 6 浏览
DataFrame数据创建
本文介绍如何创建 DataFrame,也是 pandas 中最常用的数据类型,必须掌握的,后续的所有连载文章几乎都是基于DataFrame数据的操作。
导入库
pandas 和 numpy 建议通过 anaconda 安装后使用;pymysql 主要是 python 用来连接数据库,然后进行库表操作的第三方库,也需要先安装
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import pymysql # 安装:pip install pymysql
10种方式创建 DataFrame
下面介绍的是通过不同的方式来创建 DataFrame 数据,所有方式最终使用的函数都是:pd.DataFrame()
1、创建空 DataFrame
2、创建数值为 NaN 的 DataFrame
df0 = pd.DataFrame(
columns=['A','B','C'], # 指定列属性
index=[0,1,2] # 指定行索引
)
df0
改变数据的行索引:
df0 = pd.DataFrame(
columns=['A','B','C'],
index=[1,2,3] # 改变行索引:从1开始
)
df0
手动创建 DataFrame
将每个列字段的数据通过列表的形式列出来
df1 = pd.DataFrame({
"name":["小明","小红","小侯","小周","小孙"],
"sex":["男","女","女","男","男"],
"age":[20,19,28,27,24],
"class":[1,2,2,1,2]
})
df1
读取本地文件创建
pandas 可以通过读取 Excel、CSV、JSON 等文件来创建 DataFrame 数据
1、读取 CSV 文件
比如曾经爬到的一份成都美食的数据,是 CSV 格式的:
df2 = pd.read_csv("成都美食.csv") # 括号里面填写文件的路径:本文的文件在当然目录下
df2
2、读取 Excel 文件
如果是 Excel 文件,也可以进行读取:
df3 = pd.read_excel("成都美食.xlsx")
df3.head() # 默认显示前5行数据
3、读取 json 文件
比如本地当前目录下有一份 json 格式的数据:
通过 pandas 读取进来:
df4 = pd.read_json("information.json")
df4
4、读取 TXT 文件
本地当前目录有一个 TXT 文件,如下图:
df5 = pd.read_table("text.txt")
df5
上图中如果不指定任何参数:pandas 会将第一行数据作为列字段(不是我们想要的结果),指定参数修改后的代码:
df7 = pd.read_table(
"text.txt", # 文件路径
names=["姓名","年龄","性别","省份"], # 指定列属性
sep=" " # 指定分隔符:空格
)
df7
另外的一种解决方法就是:直接修改 txt 文件,在最上面加上我们想要的列字段属性:这样最上面的一行数据便会当做列字段
姓名 年龄 性别 出生地
小明 20 男 深圳
小红 19 女 广州
小孙 28 女 北京
小周 25 男 上海
小张 22 女 杭州
读取数据库文件创建
1、先安装 pymysql
本文中介绍的是通过 pymysql 库来操作数据库,然后将数据通过 pandas 读取进来,首先要先安装下 pymysql库(假装你会了):
pip install pymysql
首先看下本地数据库中一个表中的数据:读取 Student 表中的全部数据
数据真实样子如下图:
2、建立连接
connection = pymysql.connect(
host="IP地址",
port=端口号,
user="用户名",
password="密码",
charset="字符集",
db="库名"
)
cur = connection.cursor() # 建立游标
# 待执行的SQL语句
sql = """
select * from Student
"""
# 执行SQL
cur.execute(sql)
3、返回执行的结果
data = []
for i in cur.fetchall():
data.append(i) # 将每条结果追加到列表中
data
4、创建成 DataFrame 数据
df8 = pd.DataFrame(data,columns=["学号","姓名","出生年月","性别"]) # 指定每个列属性名称
df8
使用 python 字典创建
1、包含列表的字典创建
# 1、包含列表的字典
dic1 = {"name":["小明","小红","小孙"],
"age":[20,18,27],
"sex":["男","女","男"]
}
dic1
df9 = pd.DataFrame(dic1,index=[0,1,2])
df9
2、字典中嵌套字典进行创建
# 嵌套字典的字典
dic2 = {'数量':{'苹果':3,'梨':2,'草莓':5},
'价格':{'苹果':10,'梨':9,'草莓':8},
'产地':{'苹果':'陕西','梨':'山东','草莓':'广东'}
}
dic2
# 结果
{'数量': {'苹果': 3, '梨': 2, '草莓': 5},
'价格': {'苹果': 10, '梨': 9, '草莓': 8},
'产地': {'苹果': '陕西', '梨': '山东', '草莓': '广东'}}
创建结果为:
python 列表创建
1、使用默认的行索引
lst = ["小明","小红","小周","小孙"]
df10 = pd.DataFrame(lst,columns=["姓名"])
df10
可以对索引进行修改:
lst = ["小明","小红","小周","小孙"]
df10 = pd.DataFrame(
lst,
columns=["姓名"],
index=["a","b","c","d"] # 修改索引
)
df10
3、列表中嵌套列表
# 嵌套列表形式
lst = [["小明","20","男"],
["小红","23","女"],
["小周","19","男"],
["小孙","28","男"]
]
df11 = pd.DataFrame(lst,columns=["姓名","年龄","性别"])
df11
python 元组创建
元组创建的方式和列表比较类似:可以是单层元组,也可以进行嵌套。
1、单层元组创建
# 单层元组
tup = ("小明","小红","小周","小孙")
df12 = pd.DataFrame(tup,columns=["姓名"])
df12
2、元组的嵌套
# 嵌套元组
tup = (("小明","20","男"),
("小红","23","女"),
("小周","19","男"),
("小孙","28","男")
)
df13 = pd.DataFrame(tup,columns=["姓名","年龄","性别"])
df13
使用 Series 创建
DataFrame 是将数个 Series 按列合并而成的二维数据结构,每一列单独取出来是一个 Series ,所以我们可以直接通过Series数据进行创建。
series = {'水果':Series(['苹果','梨','草莓']),
'数量':Series([60,50,100]),
'价格':Series([7,5,18])
}
df15 = pd.DataFrame(series)
df15
numpy 数组创建
1、使用 numpy 中的函数进行创建
# 1、使用numpy生成的数组
data1 = {
"one":np.arange(4,10), # 产生6个数据
"two":range(100,106),
"three":range(20,26)
}
df16 = pd.DataFrame(
data1,
index=['A','B','C','D','E','F'] # 索引长度和数据长度相同
)
df16
2、直接通过 numpy 数组创建
# 2、numpy数组创建
# reshape()函数改变数组的shape值
data2 = np.array(["小明","广州",175,"小红","深圳",165,"小周","北京",170,"小孙","上海",180]).reshape(4,3)
data2
df17 = pd.DataFrame(
data2, # 传入数据
columns=["姓名","出生地","身高"], # 列属性
index=[0,1,2,3] # 行索引
)
df17
3、使用 numpy 中的随机函数
# 3、numpy中的随机函数生成
# 创建姓名、学科、学期、班级4个列表
name_list = ["小明","小红","小孙","小周","小张"]
subject_list = ["语文","数学","英文","生物","物理","地理","化学","体育"]
semester_list = ["上","下"]
class_list = [1,2,3]
# 生成40个分数:在50-100之间
score_list = np.random.randint(50,100,40).tolist() # 50-100之间选择40个数
随机生成的 40 个分数:
通过 numpy 中的 random 模块的 choice 方法进行数据的随机生成:
df18 = pd.DataFrame({
"name": np.random.choice(name_list,40,replace=True), # replace=True表示抽取后放回(默认),所以存在相同值
"subject": np.random.choice(subject_list,40),
"semester": np.random.choice(semester_list,40),
"class":np.random.choice(class_list,40),
"score": score_list
})
df18
使用构建器 from_dict
pandas中有一个和字典相关的构建器:DataFrame.from_dict 。
它接收字典组成的字典或数组序列字典,并生成 DataFrame。除了 orient 参数默认为 columns,本构建器的操作与 DataFrame 构建器类似。把 orient 参数设置为 'index', 即可把字典的键作为行标签。
df19 = pd.DataFrame.from_dict(dict([('姓名', ['小明', '小红', '小周']),
('身高', [178, 165, 196]),
('性别',['男','女','男']),
('出生地',['深圳','上海','北京'])
])
)
df19
还可以通过参数指定行索引和列字段名称:
df20 = pd.DataFrame.from_dict(dict([('姓名', ['小明', '小红', '小周']),
('身高', [178, 165, 196]),
('性别',['男','女','男']),
('出生地',['深圳','上海','北京'])
]),
orient='index', # 将字典的键作为行索引
columns=['one', 'two', 'three'] # 指定列字段名称
)
df20
使用构建器 from_records
pandas中还有另一个支持元组列表或结构数据类型(dtype)的多维数组的构建器:from_records
data3 = [{'身高': 173, '姓名': '张三','性别':'男'},
{'身高': 182, '姓名': '李四','性别':'男'},
{'身高': 165, '姓名': '王五','性别':'女'},
{'身高': 170, '姓名': '小明','性别':'女'}]
df21 = pd.DataFrame.from_records(data3)
df21
还可以传入列表中嵌套元组的结构型数据:
data4 = [(173, '小明', '男'),
(182, '小红', '女'),
(161, '小周', '女'),
(170, '小强', '男')
]
df22 = pd.DataFrame.from_records(data4,
columns=['身高', '姓名', '性别']
)
df22
总结
DataFrame 是 pandas 中的二维数据结构,即数据以行和列的表格方式排列,类似于 Excel 、SQL 表,或 Series 对象构成的字典。它在 pandas 中是经常使用,本身就是多个 Series 类型数据的合并。
本文介绍了10 种不同的方式创建 DataFrame,最为常见的是通过读取文件的方式进行创建,然后对数据帧进行处理和分析。希望本文能够对读者朋友掌握数据帧 DataFrame 的创建有所帮助。
相关推荐
- GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!
-
「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...
- 高丽大学等机构联合发布StarGAN:可自定义表情和面部特征
-
原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...
- TensorFlow和PyTorch相继发布最新版,有何变化
-
原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...
- 「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口
-
上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...
- 20K star!搞定 LLM 微调的开源利器
-
LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...
- 大模型DeepSeek本地部署后如何进行自定义调整?
-
1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...
- 因配置不当,约5000个AI模型与数据集在公网暴露
-
除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...
- 基于pytorch的深度学习人员重识别
-
基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...
- DeepSeek本地部署:轻松训练你的AI模型
-
引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...
- 谷歌今天又开源了,这次是Sketch-RNN
-
前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...
- Tensorflow 使用预训练模型训练的完整流程
-
前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...
- 30天大模型调优学习计划(30分钟训练大模型)
-
30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...
- python爬取喜马拉雅音频,json参数解析
-
一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...
- 五、JSONPath使用(Python)(json数据python)
-
1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...
- Python网络爬虫的时候json=就是让你少写个json.dumps()
-
大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)