百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Batch大小不一定是2的n次幂!ML资深学者最新结论

liuian 2025-03-01 14:37 18 浏览

羿阁 编译整理

量子位 | 公众号 QbitAI

Batch大小不一定是2的n次幂?

是否选择2的n次幂在运行速度上竟然也相差无几?

有没有感觉常识被颠覆?

这是威斯康星大学麦迪逊分校助理教授Sebastian Raschka(以下简称R教授)的最新结论。

在神经网络训练中,2的n次幂作为Batch大小已经成为一个标准惯例,即64、128、256、512、1024等。

一直有种说法,是这样有助于提高训练效率。

但R教授做了一番研究之后,发现并非如此。

在介绍他的试验方法之前,首先来回顾一下这个惯例究竟是怎么来的?

2的n次幂从何而来?

一个可能的答案是:因为CPU和GPU的内存架构都是由2的n次幂构成的。

或者更准确地说,根据内存对齐规则,cpu在读取内存时是一块一块进行读取的,块的大小可以是2,4,8,16(总之是2的倍数)

因此,选取2的n次幂作为batch大小,主要是为了将一个或多个批次整齐地安装在一个页面上,以帮助GPU并行处理。

其次,矩阵乘法和GPU计算效率之间也存在一定的联系。

假设我们在矩阵之间有以下矩阵乘法A和B:

当A的行数等于B的列数的时候,两个矩阵才能相乘。

其实就是矩阵A的第一行每个元素分别与B的第一列相乘再求和,得到C矩阵的第一个数,然后A矩阵的第一行再与B矩阵的第二列相乘,得到第二个数,然后是A矩阵的第二行与B矩阵的第一列……

因此,如上图所示,我们拥有2×M×N×K个每秒浮点运算次数(FLOPS)

现在,如果我们使用带有Tensor Cores的GPU,例如V100时,当矩阵尺寸(M,N以及K)与16字节的倍数对齐,在FP16混合精度训练中,8的倍数的运算效率最为理想。

因此,假设在理论上,batch大小为8倍数时,对于具有Tensor Cores和FP16混合精度训练的GPU最有效,那么让我们调查一下这一说法在实践中是否也成立。

不用2的n次幂也不影响速度

为了了解不同的batch数值对训练速度的影响,R教授在CIFAR-10上运行了一个简单的基准测试训练——MobileNetV3(大)——图像的大小为224×224,以便达到适当的GPU利用率。

R教授用16位自动混合精度训练在V100卡上运行训练,该训练能更高效地使用GPU的Tensor Cores。

如果你想自己运行,该代码可在此GitHub存储库中找到(链接附在文末)

该测试共分为以下三部分:

小批量训练

从上图可以看出,以样本数量128为参考点,将样本数量减少1(127)或增加1(129),的确会导致训练速度略慢,但这种差异几乎可以忽略不计。

而将样本数量减少28(100)会导致训练速度明显放缓,这可能是因为模型现在需要处理的批次比以前更多(50,000/100=500与50,000/128= 390)

同样的原理,当我们将样本数量增加28(156)时,运行速度明显变快了。

最大批量训练

鉴于MobileNetV3架构和输入映像大小,上一轮中样本数量相对较小,因此GPU利用率约为70%。

为了调查GPU满载时的训练速度,本轮把样本数量增加到512,使GPU的计算利用率接近100%。

△由于GPU内存限制,无法使用大于515的样本数量

可以看出,跟上一轮结果一样,不管样本数量是否是2的n次幂,训练速度的差异几乎可以忽略不计。

多GPU训练

基于前两轮测试评估的都是单个GPU的训练性能,而如今多个GPU上的深度神经网络训练更常见。为此,这轮进行的是多GPU培训。

正如我们看到的,2的n次幂(256)的运行速度并不比255差太多。

测试注意事项

在上述3个基准测试中,需要特别声明的是:

所有基准测试的每个设置都只运行过一次,理想情况下当然是重复运行次数越多越好,最好还能生成平均和标准偏差,但这并不会影响到上述结论。

此外,虽然R教授是在同一台机器上运行的所有基准测试,但两次运营之间没有特意相隔很长时间,因此,这可能意味着前后两次运行之间的GPU基本温度可能不同,并可能稍微影响到运算时间。

结论

可以看出,选择2的n次幂或8的倍数作为batch大小在实践中不会产生明显差异。

然而,由于在实际使用中已成为约定俗成,选择2的n次幂作为batch大小,的确可以帮助运算更简单并且易于管理。

此外,如果你有兴趣发表学术研究论文,选择2的n次幂将使你的论文看上去不那么主观。

尽管如此,R教授仍然认为,batch的最佳大小在很大程度上取决于神经网络架构和损失函数。

例如,在最近使用相同ResNet架构的研究项目中,他发现batch的最佳大小可以在16到256之间,具体取决于损失函数。

因此,R教授建议始终把调整batch大小,作为超参数优化的一部分。

但是,如果你由于内存限制而无法使用512作为batch大小,那么则不必降到256,首先考虑500即可。

作者Sebastian Raschka

Sebastian Raschka,是一名机器学习和 AI 研究员。

他在UW-Madison(威斯康星大学麦迪逊分校)担任统计学助理教授,专注于深度学习和机器学习研究,同时也是Lightning AI的首席 AI 教育家。

另外他还写过一系列用Python和Scikit-learn做机器学习的教材。

基准测试代码链接:
https://github.com/rasbt/b3-basic-batchsize-benchmark

参考链接:
https://sebastianraschka.com/blog/2022/batch-size-2.html

— 完 —

量子位 QbitAI · 头条号签约

关注我们,第一时间获知前沿科技动态

相关推荐

GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!

「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...

高丽大学等机构联合发布StarGAN:可自定义表情和面部特征

原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...

TensorFlow和PyTorch相继发布最新版,有何变化

原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...

「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口

上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...

20K star!搞定 LLM 微调的开源利器

LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...

大模型DeepSeek本地部署后如何进行自定义调整?

1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...

因配置不当,约5000个AI模型与数据集在公网暴露

除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...

基于pytorch的深度学习人员重识别

基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...

DeepSeek本地部署:轻松训练你的AI模型

引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...

谷歌今天又开源了,这次是Sketch-RNN

前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...

Tensorflow 使用预训练模型训练的完整流程

前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...

30天大模型调优学习计划(30分钟训练大模型)

30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...

python爬取喜马拉雅音频,json参数解析

一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...

五、JSONPath使用(Python)(json数据python)

1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...

Python网络爬虫的时候json=就是让你少写个json.dumps()

大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...