百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Python 列表前置:你需要知道的一切

liuian 2025-02-18 12:22 10 浏览

在 Python 中将元素添加到列表的开头似乎是一项基本操作,但它可能会对代码的性能和可读性产生重大影响。让我们深入研究将元素添加到 Python 列表的各种方法,并完成实际示例和性能注意事项。

prepend 在 Python 中是什么意思?

Prepending 表示将一个或多个元素添加到列表的开头。虽然 Python 没有专用的 'prepend()' 方法,但它提供了几种方法来实现这一点:

numbers = [2, 3, 4]

# Using insert(0, element)
numbers.insert(0, 1)  # [1, 2, 3, 4]

# Using list concatenation
numbers = [0] + numbers  # [0, 1, 2, 3, 4]

让我们详细探讨每种方法,并了解何时使用哪种方法。

方法 1:使用 insert() — 直接方法

'insert()' 方法是 Python 的内置方法,可以在列表中的任意位置添加元素,包括开头:

fruits = ['orange', 'banana', 'mango']
fruits.insert(0, 'apple')
print(fruits)  # ['apple', 'orange', 'banana', 'mango']

# You can also insert multiple times
fruits.insert(0, 'grape')
print(fruits)  # ['grape', 'apple', 'orange', 'banana', 'mango']

何时使用 insert()

- 当您需要添加单个元素时
- 当代码可读性比性能更重要时
- 当您使用小型列表时

重要的 insert() 详细信息

# Insert works with any data type
numbers = [2, 3, 4]
numbers.insert(0, 1.5)      # [1.5, 2, 3, 4]
numbers.insert(0, "one")    # ["one", 1.5, 2, 3, 4]
numbers.insert(0, [0, 0.5]) # [[0, 0.5], "one", 1.5, 2, 3, 4]

# Insert returns None - common beginner mistake
numbers = numbers.insert(0, 1)  # Wrong! numbers will be None

方法 2:列表连接 — 简洁的方法

使用 '+' 运算符连接列表是另一种常见的元素预置方法:

colors = ['blue', 'green']

# Single element prepend
colors = ['red'] + colors
print(colors)  # ['red', 'blue', 'green']

# Multiple element prepend
colors = ['purple', 'pink'] + colors
print(colors)  # ['purple', 'pink', 'red', 'blue', 'green']

真实示例:构建事务历史记录

这是一个实际示例,其中 prepending 很有用 — 维护事务历史记录:

class TransactionHistory:
    def __init__(self):
        self.transactions = []
        
    def add_transaction(self, transaction):
        # New transactions go at the start - most recent first
        self.transactions.insert(0, {
            'timestamp': transaction['time'],
            'amount': transaction['amount'],
            'type': transaction['type']
        })
        
    def get_recent_transactions(self, limit=5):
        return self.transactions[:limit]

# Usage example
history = TransactionHistory()
history.add_transaction({
    'time': '2024-03-15 10:30',
    'amount': 50.00,
    'type': 'deposit'
})
history.add_transaction({
    'time': '2024-03-15 14:20',
    'amount': 25.00,
    'type': 'withdrawal'
})

recent = history.get_recent_transactions()
# Most recent transaction appears first

方法 3:使用 deque 进行高效前置

对于需要频繁添加到大型列表的情况下,'collections.deque' 是最好的选择:

from collections import deque

# Create a deque from a list
numbers = deque([3, 4, 5])

# Prepend single elements
numbers.appendleft(2)
numbers.appendleft(1)

# Convert back to list if needed
numbers_list = list(numbers)
print(numbers_list)  # [1, 2, 3, 4, 5]

性能比较示例

下面是一个比较不同 prepend 方法性能的实际示例:

import time
from collections import deque

def measure_prepend_performance(size):
    # Regular list with insert
    start = time.time()
    list_insert = []
    for i in range(size):
        list_insert.insert(0, i)
    list_time = time.time() - start
    
    # List concatenation
    start = time.time()
    list_concat = []
    for i in range(size):
        list_concat = [i] + list_concat
    concat_time = time.time() - start
    
    # Deque
    start = time.time()
    d = deque()
    for i in range(size):
        d.appendleft(i)
    deque_time = time.time() - start
    
    return {
        'insert': list_time,
        'concat': concat_time,
        'deque': deque_time
    }

# Test with 10,000 elements
results = measure_prepend_performance(10000)
for method, time_taken in results.items():
    print(f"{method}: {time_taken:.4f} seconds")

处理边缘情况和常见错误

让我们看看一些可能会让您绊倒的情况以及如何处理它们:

# 1. Prepending None or empty lists
numbers = [1, 2, 3]
numbers.insert(0, None)  # [None, 1, 2, 3] - Valid
numbers = [] + numbers   # [1, 2, 3] - Empty list has no effect

# 2. Prepending to an empty list
empty_list = []
empty_list.insert(0, 'first')  # Works fine: ['first']

# 3. Type mixing - be careful!
numbers = [1, 2, 3]
numbers = ['1'] + numbers  # ['1', 1, 2, 3] - Mixed types possible but risky

# 4. Modifying list while iterating
numbers = [1, 2, 3]
for num in numbers:
    numbers.insert(0, num * 2)  # Don't do this! Use a new list instead

使用 List Prepend 的实用技巧

以下是一些基于实际使用情况的具体提示:

# 1. Bulk prepending - more efficient than one at a time
old_items = [4, 5, 6]
new_items = [1, 2, 3]
combined = new_items + old_items  # Better than multiple insert() calls

# 2. Converting types safely
string_nums = ['1', '2', '3']
numbers = []
for num in string_nums:
    try:
        numbers.insert(0, int(num))
    except ValueError:
        print(f"Couldn't convert {num} to integer")

# 3. Maintaining a fixed-size list
max_size = 5
recent_items = [3, 4, 5]
recent_items.insert(0, 2)
if len(recent_items) > max_size:
    recent_items.pop()  # Remove last item if list too long

何时选择每种方法

下面是一个快速决策指南:

1. 在以下情况下使用 'insert(0, element)':
— 您正在使用小型列表
— 代码清晰是您的首要任务
— 您只需偶尔预置

2. 在以下情况下使用列表连接 ('[element] + list'):
— 您需要最清晰的语法
— 您一次预置多个元素
— 您需要链接操作

3. 在以下情况下使用 'deque':
— 您正在处理大型列表
— 性能至关重要
— 您需要经常预置和预置

请记住,过早的优化是万恶之源 — 从最易读的解决方案 ('insert()') 开始,只有在性能成为真正问题时才切换到 'deque'。

通过掌握这些在 Python 列表中预置元素的不同方法,您将能够为每种特定情况选择合适的工具。关键是了解特定用例中可读性、性能和功能之间的权衡。

相关推荐

GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!

「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...

高丽大学等机构联合发布StarGAN:可自定义表情和面部特征

原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...

TensorFlow和PyTorch相继发布最新版,有何变化

原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...

「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口

上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...

20K star!搞定 LLM 微调的开源利器

LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...

大模型DeepSeek本地部署后如何进行自定义调整?

1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...

因配置不当,约5000个AI模型与数据集在公网暴露

除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...

基于pytorch的深度学习人员重识别

基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...

DeepSeek本地部署:轻松训练你的AI模型

引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...

谷歌今天又开源了,这次是Sketch-RNN

前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...

Tensorflow 使用预训练模型训练的完整流程

前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...

30天大模型调优学习计划(30分钟训练大模型)

30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...

python爬取喜马拉雅音频,json参数解析

一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...

五、JSONPath使用(Python)(json数据python)

1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...

Python网络爬虫的时候json=就是让你少写个json.dumps()

大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...