百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

用 Python 实现手机自动答题,下一个百万获奖人可能就是你

liuian 2025-02-13 13:05 9 浏览

作者 | 李秋键

责编 | Carol

出品 | AI科技大本营(ID:rgznai100)

如果谈到这几年手机上各平台最常见的引流福利,必然是答题赢大奖系列小游戏了。像什么头号英雄,百万玩家之类的,充斥在我们生活中,同时也成为了我们生活中常见的娱乐方式。

但是有时候就会想,能不能实现手机自动答题呢,毕竟网络上是充斥着很多问题的答案,自己手动搜题速度显然来不及。答案是当然可以,今天我们就来用手机连接电脑,让电脑自动搜索答案,省时省力省心。

这一项目中主要用到了文字识别和浏览器操作,其中文字识别是利用计算机自动识别字符的技术,是模式识别应用的一个重要领域。

人们在生产和生活中,要处理大量的文字、报表和文本。为了减轻人们的劳动,提高处理效率,50年代开始探讨一般文字识别方法,并研制出光学字符识别器。60年代出现了采用磁性墨水和特殊字体的实用机器。

60年代后期,出现了多种字体和手写体文字识别机,其识别精度和机器性能都基本上能满足要求。如用于信函分拣的手写体数字识别机和印刷体英文数字识别机。70年代主要研究文字识别的基本理论和研制高性能的文字识别机,并着重于汉字识别的研究。

基于一些基础认识,下面我们先来思考下,实现这一项目的整体思路:

做这一项目首先会存在以下疑问:

  1. 我们要让手机连接电脑,但是怎么让电脑自动控制手机呢?

  2. 手机上是显示文字的,但是怎么让电脑看懂你手机上的文字呢?

  3. 电脑知道了问题后如何借助网络搜答案呢?

针对上面的问题,我们大概想了下思路:

  1. 让电脑能够控制手机,一般都是利用usb把手机连接到电脑上。然后借助ADB实现对手机的调控,包括点触、滑动、截图等等功能。

  2. 让电脑能够看懂文字,必然需要对手机屏幕截图,然后对截图中的文字识别即可

  3. 让电脑操控浏览器搜题,用python的库即可实现

了解了整体思路后,下面开始我们的实验。

实验前的准备

首先我们使用的python版本是3.6.5所用到的库有os,Python 中os模块包含普遍的操作系统功能。

如果你希望你的程序能够与平台无关的话,这个模块是尤为重要的;pillow库中Image模块是在Python PIL图像处理中常见的模块,对图像进行基础操作的功能基本都包含于此模块内;Pytesseract模块是文字识别模块;webbrowser是实现浏览器的操作;time库实现等待下一题之间的间隔时间等待。

自动获取手机文字

1、利用ADB控制手机:

ADB是安卓手机常见的调控插件,我们需要将手机数据线和电脑连接,然后借助adb实现对手机的截屏并保存在指定路径。Adb控制指令如下:

截取屏幕,图片命名为screen.png :

os.system("adb shell /system/bin/screencap -p /sdcard/screen.png") #截取屏幕,图片命名为screen.png

将截图保存到电脑,路径为:C:/Users/jia/Desktop

os.system("adb pull /sdcard/screen.png C:/Users/jia/Desktop") #将截图保存到电脑在桌面

模拟点击屏幕,x y分别为点击处的像素

os.system("adb shell input tap {}{}".format(x,y))#x ,y为点击处的像素点

详细代码如下:

#adb手机截图def get_image:os.system('adb shell screencap -p /sdcard/image.png')os.system('adb pull /sdcard/image.png .')xigua_size = (150,530,1800,800)

2、对图片文字识别:

文字识别部分为了方便快速,我们直接使用pytesseract文字识别即可。其中主要用的函数是
pytesseract.image_to_strin。

pytesser里包含了tesseract.exe和英语的数据包(默认只识别英文),还有一些示例图片,所以解压缩后即可使用。

同时模块需要PIL库的支持。

如何识别率低的问题?

可以增强图片的显示效果,或者将其转换为黑白的,这样可以使其识别率提升不少。

识别其他语言?

tesseract是一个命令行下运行的程序,参数如下:

tesseract imagename outbase [-l lang] [-psm N] [configfile...]

imagename是输入的image的名字,outbase是输出的文本的名字,默认为outbase.txt ,-l lang 是定义要识别的的语言,默认为英文。

详细代码如下:

#读取图像get_imageimg=Image.open('image.png')img_que = img.crop(xigua_size)#识别截图文字question=pytesseract.image_to_string(img_que,lang='chi_sim')

获取文字后,对文字做一些处理,去除没必要的信息。

question=question.replace(' ','').replace('\n','')que = question[question.find('.')+1: question.find('?')]

自动搜题的实现

1、浏览器操作:

在识别问题的基础上,我们通过webbrowser打开浏览器,并操作浏览器搜索答案。

其中主要用到的方法如下:

  • webbrowser 有以下方法:

webbrowser.open(url[, new=0[, autoraise=1]])

这个方法是在默认的浏览器中显示url, 如果new = 0, 那么url会在同一个浏览器窗口下打开,如果new = 1, 会打开一个新的窗口,如果new = 2, 会打开一个新的tab, 如果autoraise = true, 窗口会自动增长。

webbrowser.open_new(url)

在默认浏览器中打开一个新的窗口来显示url, 否则,在仅有的浏览器窗口中打开url。

webbrowser.open_new_tab(url)

在默认浏览器中当开一个新的tab来显示url, 否则跟open_new一样、

webbrowser.get([name])

根据name返回一个浏览器对象,如果name为空,则返回默认的浏览器

webbrowser.register(name, construtor[, instance])

注册一个名字为name的浏览器,如果这个浏览器类型被注册就可以用get方法来获取。

详细代码如下:

#引擎搜索url = "https://www.baidu.com/s?wd=" +quewebbrowser.open(url)get_imageimg=Image.open('image.png')img_que = img.crop(xigua_size)question1= pytesseract.image_to_string(img_que,)question1=question1.replace(' ','').replace('\n','')que = question1[question.find('.')+1: question.find('?')]
while True:while(question1==question):get_imageimg = Image.open('image.png')img_que = img.crop(xigua_size)question1 = pytesseract.image_to_string(img_que,)question1 = question1.replace(' ', '').replace('\n', '')que = question1[question.find('.') + 1: question.find('?')]get_imageimg = Image.open('image.png')img_que = img.crop(xigua_size)# 识别截图文字question = pytesseract.image_to_string(img_que,)question = question.replace(' ', '').replace('\n', '')que = question[question.find('.') + 1: question.find('?')]continuewhile(question1!=question):get_imageimg = Image.open('image.png')img_que = img.crop(xigua_size)# 识别截图文字question = pytesseract.image_to_string(img_que,)question1 = pytesseract.image_to_string(img_que,)question1 = question1.replace(' ', '').replace('\n', '')que = question1[question.find('.') + 1: question.find('?')]question = question.replace(' ', '').replace('\n', '')que = question[question.find('.') + 1: question.find('?')]# 引擎搜索url = "https://www.baidu.com/s?wd=" + quewebbrowser.open(url)continue

到这里,我们整体的程序就搭建完成,下面为我们程序的运行结果:

试试用这个方法参加《百万答题》类小游戏,或许下一个百万获奖人就是你。

作者介绍:

李秋键,CSDN 博客专家,CSDN达人课作者。硕士在读于中国矿业大学,开发有taptap安卓武侠游戏一部,vip视频解析,文意转换工具,写作机器人等项目,发表论文若干,多次高数竞赛获奖等等。

新勋章,新奖品,高流量,还有更多福利等你来拿~

?360金融新任首席科学家:别指望AI Lab做成中台

?搞懂微服务,从捕捉一头野猪说起

?AI 图像智能修复老照片,效果惊艳到我了!| 附代码

?调查了 10,975 位 Go 语言开发者,我们有了这些发现!

?架构师前辈告诉你:代码该如何才能自己写得容易,别人看得也不痛苦

相关推荐

GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!

「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...

高丽大学等机构联合发布StarGAN:可自定义表情和面部特征

原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...

TensorFlow和PyTorch相继发布最新版,有何变化

原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...

「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口

上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...

20K star!搞定 LLM 微调的开源利器

LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...

大模型DeepSeek本地部署后如何进行自定义调整?

1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...

因配置不当,约5000个AI模型与数据集在公网暴露

除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...

基于pytorch的深度学习人员重识别

基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...

DeepSeek本地部署:轻松训练你的AI模型

引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...

谷歌今天又开源了,这次是Sketch-RNN

前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...

Tensorflow 使用预训练模型训练的完整流程

前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...

30天大模型调优学习计划(30分钟训练大模型)

30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...

python爬取喜马拉雅音频,json参数解析

一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...

五、JSONPath使用(Python)(json数据python)

1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...

Python网络爬虫的时候json=就是让你少写个json.dumps()

大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...