数据清洗之pandas看后你就会用了
liuian 2025-01-10 15:15 12 浏览
Pandas是Python一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作。Excel 2007及其以后的版本的最大行数是1048576,最大列数是16384,Pandas处理上千万的数据是易如反掌的,excel做不了的,pandas可以,excel能做的,pandas也可以;总而言之,谁用谁知道。
import pandas as pd
import numpy as np
df = pd.read_csv('2022-01-29跌幅前十.csv')
df
纬德信息\t-19.44\t城地香江\t-10.02\t安妮股份\t-10.01\t金财互联\t-10.01\t亚联发展\t-9.98\t吉大正元\t-9.98\t浙数文化\t-9.18\t证通电子\t-9.09\t新炬网络\t-7.49\t浪潮软件\t-7.24\t
通过df的info可以看出来,在上篇获取数据中,没有对数据处理,在这儿就需要整理出符合matplotlib要求的格式;这里需要先将数据转换成DataFrame形式
d = pd.DataFrame(df.columns[0].split('\t'))
有心的你看到了,凡是名称的索引都是偶数,涨跌幅度索引是奇数,我们需要根据这个规律提取出来符合要求的数据,这也涉及了数据变形的操作,后面会详细讲。
name = d[0][[i for i in range(0, 20, 2)]]
number = d[0][[i for i in range(1, 20, 2)]]
[[i for i in range(0, 20, 2)]]是python中的列表推导式,一种循环的写法,简捷高效,0是开始位,20是结束位,2是步长,range这三个参数的意思明白就好;现在这二条数据已经基本准备好了,为什么说基本呢?因为现在的数据是object,而在绘图时需要的是int(整型)或float(浮点),从上图中可以看出它们的dtype,我们转换一下
num2 = np.array(number, dtype=np.float16)
这是跌幅前十名的数据,按照这个操作涨幅前十名
dt = pd.read_csv('2022-01-29涨幅前十.csv')
zf = pd.DataFrame(dt.columns[0].split('\t'))
name1 = zf[0][[i for i in range(0, 20, 2)]]
number1 = zf[0][[i for i in range(1, 21, 2)]]
num1 = np.array(number1, dtype=np.float16)
上面为了详细展示操作过程,看着有点多,其实就5行代码就完成了所有的准备工作;
下面说说pandas中基本的增、删、改、查和数据的变形
上图是给原数据中增加一列,值为1,也可增加多列,写成列表的格式就行
也可以用drop删除,这里要注意,用del只能一次删除一列drop却可以用列表进行多列操作
上面说了按列删除,下面说下按行删除,为了方便后面展示,重新生成一个新表
# 将第二列中的0和1改成hello,world
d2['col1'] = d2['col1'].replace({0:'hello',1:'world'})
# 将col2列中的1改成ok
d2.iloc[0,2] = 'ok' # 其中iloc[0, 2]是高级索引或切片索引,0是指第一列,2是指第一列第三行,当然也可以按行标签和列标签提取相应位置的数据,不过这样写简便
d2
将表中的hello全部替换成1,这里的厉害之处在于replace中可以用正则表达式,这一点excel坐导弹也追不上
d2.replace('hello','1')
通过上面的增、删、改,其实已经用了“查”,就是用切片索引查找,其中loc是按行标签查找,而iloc是可以行列结合
下面再说说行列数据变形相关的操作
ascending=0是改变默认的排序,1是默认值
行列变形的stack函数
变形后恢复默认索引状态
修改列名
原始的图形是
现在将d4再变形回去d3的样式
通过pivot函数达成目的,离原始还差一步,就是A的消失
现在已经实现了行列的互换,假如想将c列排到第一列去,需要一是将列标写成列表,二是再替换,具体的看图
到此,基本上可以用pandas处理日常工作了,下篇文章再说一下如何生成字典,以及将int变成object;
我们现在获取数据就可以直接用pandas读取和保存了,这样比上篇文章中说的简单直接还高效,这样的好处就是循环之类的就省了,从html.json()这儿开始,忘记的可以看下上篇文章
dataframe = pd.DataFrame(html.json()['list'])
dataframe.to_csv(title[spe])
二句代码解决问题,同时还保证了格式的统一和完整;下篇文章开始绘图的制作,欢迎留言或私信交流
相关推荐
- GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!
-
「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...
- 高丽大学等机构联合发布StarGAN:可自定义表情和面部特征
-
原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...
- TensorFlow和PyTorch相继发布最新版,有何变化
-
原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...
- 「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口
-
上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...
- 20K star!搞定 LLM 微调的开源利器
-
LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...
- 大模型DeepSeek本地部署后如何进行自定义调整?
-
1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...
- 因配置不当,约5000个AI模型与数据集在公网暴露
-
除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...
- 基于pytorch的深度学习人员重识别
-
基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...
- DeepSeek本地部署:轻松训练你的AI模型
-
引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...
- 谷歌今天又开源了,这次是Sketch-RNN
-
前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...
- Tensorflow 使用预训练模型训练的完整流程
-
前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...
- 30天大模型调优学习计划(30分钟训练大模型)
-
30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...
- python爬取喜马拉雅音频,json参数解析
-
一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...
- 五、JSONPath使用(Python)(json数据python)
-
1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...
- Python网络爬虫的时候json=就是让你少写个json.dumps()
-
大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)