百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Python爬虫快速入门,BeautifulSoup基本使用及实践

liuian 2024-12-27 15:15 19 浏览

来源:Python数据之道

作者:Peter

整理:阳哥

大家好,我是阳哥。

今天来跟大家分享用 BeautifulSoup 获取信息的一些知识点,文章内容由公众号读者 Peter 创作。

欢迎各位童鞋向公众号投稿,点击下面图片了解详情!

爬虫,是学习Python的一个有用的分支,互联网时代,信息浩瀚如海,如果能够便捷的获取有用的信息,我们便有可能领先一步,而爬虫正是这样的一个工具。


Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库。由于 BeautifulSoup 是基于 Python,所以相对来说速度会比另一个 Xpath 会慢点,但是其功能也是非常的强大,本文会介绍该库的基本使用方法,帮助读者快速入门。

网上有很多的学习资料,但是超详细学习内容还是非官网莫属,资料传送门:

英文官网:https://www.crummy.com/software/BeautifulSoup/bs4/doc/

中文官网:https://www.crummy.com/software/BeautifulSoup/bs4/doc.zh/

本文的主要内容如下:

安装和使用

安装

安装过程非常简单,直接使用pip即可:

pip install beautifulsoup4

上面安装库最后的4是不能省略的,因为还有另一个库叫作 beautifulsoup,但是这个库已经停止开发了。

因为BS4在解析数据的时候是需要依赖一定的解析器,所以还需要安装解析器,我们安装强大的lxml:

pip install lxml

在python交互式环境中导入库,没有报错的话,表示安装成功。

使用

使用过程直接导入库:

from bs4 import BeautifulSoup

解析原理

解析原理

  • 实例化一个BeautifulSoup对象,并且将本地或者页面源码数据加载到该对象中
  • 通过调用该对象中相关的属性或者方法进行标签定位和数据提取

如何实例化BeautifulSoup对象

  1. 将本地的HTML文档中的数据加载到BS对象中
  2. 将网页上获取的页面源码数据加载到BS对象中

案例解析

原数据

假设我们现在本地有一个HTML文件待解析,具体内容如下,数据中有各种HTML标签:html、head、body、div、p、a、ul、li等

加载数据

from bs4 import BeautifulSoup

fp = open('./test.html','r',encoding='utf-8')  # 打开本地文件
soup = BeautifulSoup(fp,'lxml')
soup

所有的数据解析都是基于soup对象的,下面开始介绍各种解析数据方法:

soup.tagName

soup.TagName返回的是该标签第一次出现的内容,以a标签为例:

数据中多次出现a标签,但是只会返回第一次出现的内容

我们再看下div标签:

出现了2次,但是只会返回第一次的内容:

soup.find('tagName')

find()主要是有两个方法:

  • 返回某个标签第一次出现的内容,等同于上面的soup.tagName
  • 属性定位:用于查找某个有特定性质的标签

1、返回标签第一次出现的内容:

比如返回a标签第一次出现的内容:

再比如返回div标签第一次出现的内容:

2、属性定位

比如我们想查找a标签中id为“谷歌”的数据信息:

在BS4中规定,如果遇到要查询class情况,需要使用class_来代替:

但是如果我们使用attrs参数,则是不需要使用下划线的:

soup.find_all()

该方法返回的是指定标签下面的所有内容,而且是列表的形式;传入的方式是多种多样的。

1、传入单个指定的标签

image-20210523170401516

上面返回的是列表形式,我们可以获取我们想要的内容:

2、传入多个标签(列表形式)

需要主要返回内容的表达形式,每个标签的内容是单独显示的

3、传入正则表达式

比如查看以a开头标签的全部内容

查看以li标签开头的全部内容:

选择器soup.select()

主要是有3种选择器,返回的内容都是列表形式

  • 类选择器:点
  • id选择器:#
  • 标签选择器:直接指定标签名

1、类选择器

2、id选择器

3、标签选择器

直接指定li标签

4、选择器和find_all()可以达到相同的效果:

soup.tagName和soup.find('tagName')的效果也是相同的:

层级选择器使用

在soup.select()方法中是可以使用层级选择器的,选择器可以是类、id、标签等,使用规则:

  • 单层:>
  • 多层:空格

1、单层使用

2、多层使用

获取标签文本内容

获取某个标签中对应文本内容主要是两个属性+一个方法:

  • text
  • string
  • get_text()

1、text

2、string

3、get_text()

3者之间的区别

# text和get_text():获取标签下面的全部文本内容
# string:只能获取到标签下的直系文本内容

获取标签属性值

1、通过选择器来获取

2、通过find_all方法来获取

BeautifulSoup实战

下面介绍的是通过BeautifulSoup解析方法来获取某个小说网站上古龙小说名称和对应的URL地址。

网站数据

我们需要爬取的数据全部在这个网址下:https://www.kanunu8.com/zj/10867.html,右键“检查”,查看对应的源码,可以看到对应小说名和URL地址在源码中位置

每行3篇小说在一个tr标签下面,对应的属性href和文本内容就是我们想提取的内容。

获取网页源码

import requests
from bs4 import BeautifulSoup
import pandas as pd
import re

url = 'https://www.kanunu8.com/zj/10867.html'
headers = {'user-agent': '个人请求头'}

response = requests.get(url = url,headers = headers)
result = response.content.decode('gbk')   # 该网页需要通过gbk编码来解析数据
# result

实例化BeautifulSoup对象

soup1 = BeautifulSoup(result,'lxml')
# print(soup1.prettify())  美化输出源码内容

获取名称和URL地址

1、先获取整体内容

两个信息全部指定a标签中,我们只需要获取到a标签,通过两个属性href和target即可锁定:

# 两个属性href和target,不同的方法来锁定

information_list = soup1.find_all('a',href=re.compile('^/book'),target='_blank')
information_list

2、再单独获取两个信息

通过属性来获取URL地址,通过文本来获取名称

url_list = []
name_list = []

for i in information_list:
    url_list.append(i['href'])  # 获取属性
    name_list.append(i.text)  # 获取文本

3、生成数据帧

gulong = pd.DataFrame({
    "name":name_list,
    "url":url_list}
)

gulong

我们发现每部小说的具体地址其实是有一个公共前缀的:https://www.kanunu8.com/book,现在给加上:

gulong['url'] = 'https://www.kanunu8.com/book' + gulong['url']   # 加上公共前缀
gulong.head()

另外,我们想把书名的《》给去掉,使用replace替代函数:

gulong["name"] = gulong["name"].apply(lambda x:x.replace("《",""))  # 左边
gulong["name"] = gulong["name"].apply(lambda x:x.replace("》","")) # 右边

# 保存
gulong.to_csv("gulong.csv",index=False)  # 保存到本地的csv文件

最后显示的前5行数据:

总结

本文从BeautifulSoup4库的安装、原理以及案例解析,到最后结合一个实际的爬虫实现介绍了一个数据解析库的使用,文中介绍的内容只是该库的部分内容,方便使用者快速入门,希望对读者有所帮助。

相关推荐

GANs为何引爆机器学习?这篇基于TensorFlow的实例教程为你解惑!

「机器人圈导览」:生成对抗网络无疑是机器学习领域近三年来最火爆的研究领域,相关论文层出不求,各种领域的应用层出不穷。那么,GAN到底如何实践?本文编译自Medium,该文作者以一朵玫瑰花为例,详细阐...

高丽大学等机构联合发布StarGAN:可自定义表情和面部特征

原文来源:arXiv、GitHub作者:YunjeyChoi、MinjeChoi、MunyoungKim、Jung-WooHa、SungKim、JaegulChoo「雷克世界」编译:嗯~...

TensorFlow和PyTorch相继发布最新版,有何变化

原文来源:GitHub「机器人圈」编译:嗯~阿童木呀、多啦A亮Tensorflow主要特征和改进在Tensorflow库中添加封装评估量。所添加的评估量列表如下:1.深度神经网络分类器(DNNCl...

「2022 年」崔庆才 Python3 爬虫教程 - 深度学习识别滑动验证码缺口

上一节我们使用OpenCV识别了图形验证码躯壳欧。这时候就有朋友可能会说了,现在深度学习不是对图像识别很准吗?那深度学习可以用在识别滑动验证码缺口位置吗?当然也是可以的,本节我们就来了解下使用深度...

20K star!搞定 LLM 微调的开源利器

LLM(大语言模型)微调一直都是老大难问题,不仅因为微调需要大量的计算资源,而且微调的方法也很多,要去尝试每种方法的效果,需要安装大量的第三方库和依赖,甚至要接入一些框架,可能在还没开始微调就已经因为...

大模型DeepSeek本地部署后如何进行自定义调整?

1.理解模型架构a)查看深度求索官方文档或提供的源代码文件,了解模型的结构、输入输出格式以及支持的功能。模型是否为预训练权重?如果是,可以在预训练的基础上进行微调(Fine-tuning)。是否需要...

因配置不当,约5000个AI模型与数据集在公网暴露

除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。前情回顾·人工智能安全动态向ChatGPT植入恶意“长期记忆”,持续窃取用户输入数据多模态大语言模型的致...

基于pytorch的深度学习人员重识别

基于pytorch的深度学习人员重识别Torchreid是一个库。基于pytorch的深度学习人员重识别。特点:支持多GPU训练支持图像的人员重识别与视频的人员重识别端到端的训练与评估简单的re...

DeepSeek本地部署:轻松训练你的AI模型

引言:为什么选择本地部署?在AI技术飞速发展的今天,越来越多的企业和个人希望将AI技术应用于实际场景中。然而,对于一些对数据隐私和计算资源有特殊需求的用户来说,云端部署可能并不是最佳选择。此时,本地部...

谷歌今天又开源了,这次是Sketch-RNN

前不久,谷歌公布了一项最新技术,可以教机器画画。今天,谷歌开源了代码。在我们研究其代码之前,首先先按要求设置Magenta环境。(https://github.com/tensorflow/magen...

Tensorflow 使用预训练模型训练的完整流程

前面已经介绍了深度学习框架Tensorflow的图像的标注和训练数据的准备工作,本文介绍一下使用预训练模型完成训练并导出训练的模型。1.选择预训练模型1.1下载预训练模型首先需要在Tensorf...

30天大模型调优学习计划(30分钟训练大模型)

30天大模型调优学习计划,结合Unsloth和Lora进行大模型微调,掌握大模型基础知识和调优方法,熟练应用。第1周:基础入门目标:了解大模型基础并熟悉Unsloth等工具的基本使用。Day1:大模...

python爬取喜马拉雅音频,json参数解析

一.抓包分析json,获取加密方式1.抓包获取音频界面f12打开抓包工具,播放一个(非vip)视频,点击“媒体”单击打开可以复制URL,发现就是我们要的音频。复制“CKwRIJEEXn-cABa0Tg...

五、JSONPath使用(Python)(json数据python)

1.安装方法pipinstalljsonpath2.jsonpath与Xpath下面表格是jsonpath语法与Xpath的完整概述和比较。Xpathjsonpath概述/$根节点.@当前节点...

Python网络爬虫的时候json=就是让你少写个json.dumps()

大家好,我是皮皮。一、前言前几天在Python白银交流群【空翼】问了一个Python网络爬虫的问题,提问截图如下:登录请求地址是这个:二、实现过程这里【甯同学】给了一个提示,如下所示:估计很多小伙伴和...